Строительный портал - NikolskyAdm

Как работает магический квадрат. Четные магические квадраты Волшебный квадрат с цифрами

Данная загадка быстро разлетелась по всему Интернету. Тысячи людей начали задаваться вопросом о том, как работает магический квадрат. Сегодня вы, наконец-то, найдете ответ!

Тайна магического квадрата

На самом деле данная загадка довольно проста и сделана с расчётом на человеческую невнимательность. Давайте разберемся, как работает магический черный квадрат, на реальном примере:

  1. Давайте загадаем любое число от 10 до 19. Теперь давайте вычтем из данного числа его составляющие цифры. К примеру, возьмем 11. Отнимем от 11 единицу и после – еще одну единицу. Выйдет 9. На самом деле не важно, какое число от 10 до 19 вы возьмете. Результат вычислений всегда будет 9. Числу 9 в «Магическом Квадрате» соответствует первая цифра с рисунками. Если присмотреться, то можно увидеть, что очень большому количеству цифр присвоены одни и те же рисунки.
  2. Что же будет, если взять число в пределах от 20 и до 29? Может, вы уже сами догадались? Правильно! Результатом вычислений всегда будет 18. Цифра 18 соответствует второй позиции на диагонали с рисунками.
  3. Если же взять число от 30 до 39, то, как можно уже угадать, выйдет число 27. Число 27 также соответствует цифре на диагонали столь необъяснимого «Магического Квадрата».
  4. Подобный алгоритм остается правдивым для любых чисел от 40 до 49, от 50 до 59 и так далее.

То есть выходит, что неважно, какое число вы загадали - «Магический Квадрат» угадает результат, ведь в клетках под номерами 9, 18, 27, 36, 45, 54, 63, 72 и 81 на самом деле находится один и тот же символ.

На самом деле данную загадку можно легко объяснить с помощью простого уравнения:

  1. Вообразите любое двухзначное число. В независимости от числа его можно представить в виде x*10+y. Десятки выступают в роли “x”, а единицы в роли “у”.
  2. Вычтите из загаданного числа цифры, которые составляют его. Складываем уравнение: (x*10+y)-(x+y)=9*x.
  3. Число, которое вышло в результате вычислений должно указывать на определенный символ в таблице.

Не важно, какая цифра будет в роли “x”, так или иначе вы получите символ, у которого номер будет кратный девяти. Для того чтобы убедится в том, что под разными номерами находится один символ, достаточно просто посмотреть на таблицу и на номера 0,9,18,27,45,54,63,72,81 и последующие.

Существует несколько различных классификаций магических квадратов

пятого порядка, призванных хоть как-то их систематизировать. В книге

Мартина Гарднера [ГМ90, сс. 244-345] описан один из таких способов –

по числу в центральном квадрате. Способ любопытный, но не более того.

Сколько существует квадратов шестого порядка, до сих пор неизвестно, но их примерно 1.77 х 1019 . Число огромное, поэтому нет никаких надежд пересчитать их с помощью полного перебора, а вот формулы для подсчёта магических квадратов никто придумать не смог.

Как составить магический квадрат?

Придумано очень много способов построения магических квадратов. Проще всего составлять магические квадраты нечётного порядка . Мы воспользуемся методом, который предложил французский учёный XVII века А. де ла Лубер (De La Loubère). Он основан на пяти правилах, действие которых мы рассмотрим на самом простом магическом квадрате 3 х 3 клетки.

Правило 1. Поставьте 1 в среднюю колонку первой строки (Рис. 5.7).

Рис. 5.7. Первое число

Правило 2. Следующее число поставьте, если возможно в клетку, соседнюю с текущей по диагонали правее и выше (Рис. 5.8).

Рис. 5.8. Пытаемся поставить второе число

Правило 3. Если новая клетка выходит за пределы квадрата сверху , то запишите число в самую нижнюю строку и в следующую колонку (Рис. 5.9).

Рис. 5.9. Ставим второе число

Правило 4. Если клетка выходит за пределы квадрата справа , то запишите число в самую первую колонку и в предыдущую строку (Рис. 5.10).

Рис. 5.10. Ставим третье число

Правило 5. Если в клетке уже занята , то очередное число запишите под текущей клеткой (Рис. 5.11).

Рис. 5.11. Ставим четвёртое число

Рис. 5.12. Ставим пятое и шестое число

Снова выполняйте Правила 3, 4, 5, пока не составите весь квадрат (Рис.

Не правда ли, правила очень простые и понятные, но всё равно довольно утомительно расставлять даже 9 чисел. Однако, зная алгоритм построения магических квадратов, мы сможем легко перепоручить компьютеру всю рутинную работу, оставив себе только творческую, то есть написание программы.

Рис. 5.13. Заполняем квадрат следующими числами

Проект Магические квадраты (Magic)

Набор полей для программы Магические квадраты совершенно очевиден:

// ПРОГРАММА ДЛЯ ГЕНЕРИРОВАНИЯ

// НЕЧЕТНЫХ МАГИЧЕСКИХ КВАДРАТОВ

// ПО МЕТОДУ ДЕ ЛА ЛУБЕРА

public partial class Form1 : Form

//макс. размеры квадрата: const int MAX_SIZE = 27; //var

int n=0; // порядок квадрата int [,] mq; // магический квадрат

int number=0; // текущее число для записи в квадрат

int col=0; // текущая колонка int row=0; // текущая строка

Метод де ла Лубера годится для составления нечётных квадратов любого размера, поэтому мы можем предоставить пользователю возможность самостоятельно выбирать порядок квадрата, разумно ограничив при этом свободу выбора 27-ью клетками.

После того как пользователь нажмёт заветную кнопку btnGen Генерировать! , метод btnGen_Click создаёт массив для хранения чисел и переходит в метод generate :

//НАЖИМАЕМ КНОПКУ "ГЕНЕРИРОВАТЬ"

private void btnGen_Click(object sender, EventArgs e)

//порядок квадрата:

n = (int )udNum.Value;

//создаем массив:

mq = new int ;

//генерируем магический квадрат: generate();

lstRes.TopIndex = lstRes.Items.Count-27;

Здесь мы начинаем действовать по правилам де ла Лубера и записываем первое число – единицу – в среднюю клетку первой строки квадрата (или массива, если угодно):

//Генерируем магический квадрат void generate(){

//первое число: number=1;

//колонка для первого числа - средняя: col = n / 2 + 1;

//строка для первого числа - первая: row=1;

//заносим его в квадрат: mq= number;

Теперь мы последовательно пристраиваем по клеткам остальные числа – от двойки до n * n:

//переходим к следующему числу:

Запоминаем на всякий случай координаты актуальной клетки

int tc=col; int tr = row;

и переходим в следующую клетку по диагонали:

Проверяем выполнение третьего правила:

if (row < 1) row= n;

А затем четвёртого:

if (col > n) { col=1;

goto rule3;

И пятого:

if (mq != 0) { col=tc;

row=tr+1; goto rule3;

Как мы узнаем, что в клетке квадрата уже находится число? – Очень просто: мы предусмотрительно записали во все клетки нули , а числа в готовом квадрате больше нуля . Значит, по значению элемента массива мы сразу же определим, пустая клетка или уже с числом! Обратите внимание, что здесь нам понадобятся те координаты клетки, которые мы запомнили перед поиском клетки для следующего числа.

Рано или поздно мы найдём подходящую клетку для числа и запишем его в соответствующую ячейку массива:

//заносим его в квадрат: mq = number;

Попробуйте иначе организовать проверку допустимости перехода в но-

вую клетку!

Если это число было последним , то программа свои обязанности выполнила, иначе она добровольно переходит к обеспечению клеткой следующего числа:

//если выставлены не все числа, то if (number < n*n)

//переходим к следующему числу: goto nextNumber;

И вот квадрат готов! Вычисляем его магическую сумму и распечатываем на экране:

} //generate()

Напечатать элементы массива очень просто, но важно учесть выравнивание чисел разной «длины», ведь в квадрате могут быть одно-, дву- и трёхзначные числа:

//Печатаем магический квадрат void writeMQ()

lstRes.ForeColor = Color .Black;

string s = "Магическая сумма = " + (n*n*n +n)/2; lstRes.Items.Add(s);

lstRes.Items.Add("" );

// печатаем магический квадрат: for (int i= 1; i<= n; ++i){

s="" ;

for (int j= 1; j <= n; ++j){

if (n*n > 10 && mq < 10) s += " " ; if (n*n > 100 && mq < 100) s += " " ; s= s + mq + " " ;

lstRes.Items.Add(s);

lstRes.Items.Add("" ); }//writeMQ()

Запускаем программу – квадраты получаются быстро и на загляденье (Рис.

Рис. 5.14. Изрядный квадратище!

В книге С.Гудман, С.Хидетниеми Введение в разработку и анализ алгорит-

мов , на страницах 297-299 мы отыщем тот же самый алгоритм, но в «сокращённом» изложении. Он не столь «прозрачен», как наша версия, но работает верно.

Добавим кнопку btnGen2 Генерировать 2! и запишем алгоритм на языке

Си-шарп в метод btnGen2_Click :

//Algorithm ODDMS

private void btnGen2_Click(object sender, EventArgs e)

//порядок квадрата: n = (int )udNum.Value;

//создаем массив:

mq = new int ;

//генерируем магический квадрат: int row = 1;

int col = (n+1)/2;

for (int i = 1; i <= n * n; ++i)

mq = i; if (i % n == 0)

if (row == 1) row = n;

if (col == n) col = 1;

//построение квадрата закончено: writeMQ();

lstRes.TopIndex = lstRes.Items.Count - 27;

Кликаем кнопку и убеждаемся, что генерируются «наши» квадраты (Рис.

Рис. 5.15. Старый алгоритм в новом обличии

Введение

Великие ученые древности считали количественные отношения основой сущности мира. Поэтому числа и их соотношения занимали величайшие умы человечества. «В дни моей юности я в свободное время развлекался тем, что составлял… магические квадраты»- писал Бенджамин Франклин. Магический квадрат- это квадрат, сумма чисел которого в каждом горизонтальном ряду, в каждом вертикальном ряду и по каждой из диагоналей одна и та же.

Некоторые выдающиеся математики посвятили свои работы магическим квадратам и полученные ими результаты оказали влияние на развитие групп, структур, латинских квадратов, определителей, разбиений, матриц, сравнений и других нетривиальных разделов математики.

Цель настоящего реферата - знакомство с различными магическими квадратами, латинскими квадратами и изучение областей их применения.

Магические квадраты

Полного описания всех возможных магических квадратов не получено и до сего времени. Магических квадратов 2х2 не существует. Существует единственный магический квадрат 3х3, так как остальные магические квадраты 3х3 получаются из него либо поворотом вокруг центра, либо отражением относительно одной из его осей симметрии.

Расположить натуральные числа от 1 до 9 в магический квадрат 3х3 можно 8 различными способами:

  • 9+5+1
  • 9+4+2
  • 8+6+2
  • 8+5+2
  • 8+4+3
  • 7+6+2
  • 7+5+3
  • 6+5+4

В магическом квадрате 3х3 магической постоянной 15 должны быть равны сумме трех чисел по 8 направлениям: по 3 строкам, 3 столбцам и 2 диагоналям. Так как число, стоящее в центре, принадлежит 1 строке, 1 столбцу и 2 диагоналям, оно входит в 4 из 8 троек, дающих в сумме магическую постоянную. Такое число только одно: это 5. Следовательно, число, стоящее в центре магического квадрата 3х3, уже известно: оно равно 5.

Рассмотрим число 9. Оно входит только в 2 тройки чисел. Мы не можем поместить его в угол, так как каждая угловая клетка принадлежит 3 тройкам: строке, столбцу и диагонали. Следовательно, число 9 должно стоять в какой-то клетке, примыкающей к стороне квадрата в ее середине. Из-за симметрии квадрата безразлично, какую из сторон мы выберем, поэтому пишем 9 над числом 5, стоящим в центральной клетке. По обе стороны от девятки в верхней строке мы можем вписать только числа 2 и 4. Какое из этих двух чисел окажется в правом верхнем углу и какое в левом, опять - таки не имеет значения, так как одно расположение чисел переходит в другое при зеркальном отражении. Остальные клетки заполняются автоматически. Проведенное нами простое построение магического квадрата 3х3 доказывает его единственность.

Такой магический квадрат был у древних китайцев символом огромного значения. Цифра 5 в середине означала землю, а вокруг нее в строгом равновесии располагались огонь (2 и 7), вода (1 и 6),

дерево (3 и 8), металл (4 и 9).

С увеличением размеров квадрата (числа клеток) быстро растет количество возможных магических квадратов такого размера. Существует 880 магических квадратов порядка 4 и 275 305 224 магических квадратов порядка 5. Причем, квадраты 5х5 были известны еще в средние века. Мусульмане, например, очень благоговейно относились к таким квадратом с цифрой 1 в середине, считая его символом единства Аллаха.

Магический квадрат Пифагора

Великий ученый Пифагор, основавший религиозно - философское учение, провозгласившее количественные отношения основой сущности вещей, считал, что сущность человека заключается тоже в числе - дате рождения. Поэтому с помощью магического квадрата Пифагора можно познать характер человека, степень отпущенного здоровья и его потенциальные возможности, раскрыть достоинства и недостатки и тем самым выявить, что следует предпринять для его совершенствования.

Для того, чтобы понять, что такое магический квадрат Пифагора и как подсчитываются его показатели, сделаю его расчет на своем примере. А чтобы убедиться, что результаты подсчета действительно соответствуют реальному характеру той или иной личности, вначале я проверю его на себе. Для этого я буду делать расчет по своей дате рождения. Итак, моя дата рождения 20.08.1986. Сложим цифры дня, месяца и года рождения (без учета нулей): 2+8+1+9+8+6=34. Далее складываем цифры результата: 3+4=7. Затем из первой суммы вычитаем удвоенную первую цифру дня рождения: 34-4=30. И вновь складываем цифры последнего числа:

3+0=3. Осталось сделать последние сложения - 1-й и 3-й и 2-й и 4-й сумм: 34+30=64, 7+3=10. Получили числа 20.08.1986,34,7,30, 64,10.

и составляем магический квадрат так, чтобы все единицы этих чисел вошли в ячейку 1, все двойки - в ячейку 2 и т. д. Нули при этом во внимание не принимаются. В результате мой квадрат будет выглядеть следующим образом:

Ячейки квадрата означают следующее:

Ячейка 1 - целеустремленность, воля, упорство, эгоизм.

  • 1 - законченные эгоисты, стремятся из любого положения извлечь максимальную выгоду.
  • 11 - характер, близкий к эгоистическому.
  • 111 - «золотая середина». Характер спокойный, покладистый, коммуникабельный.
  • 1111 - люди сильного характера, волевые. Мужчины с таким характером подходят на роль военных - профессионалов, а женщины держат свою семью в кулаке.
  • 11111 - диктатор, самодур.
  • 111111 - человек жестокий, способный совершить невозможное; нередко попадает под влияние какой - то идеи.

Ячейка 2 - биоэнергетика, эмоциональность, душевность, чувственность. Количество двоек определяет уровень биоэнергетики.

Двоек нет - открыт канал для интенсивного набора биоэнергетики. Эти люди воспитаны и благородны от природы.

  • 2 - обычные в биоэнергетическом отношении люди. Такие люди очень чувствительны к изменениям в атмосфере.
  • 22 - относительно большой запас биоэнергетики. Из таких людей получаются хорошие врачи, медсестры, санитары. В семье таких людей редко у кого бывают нервные стрессы.
  • 222 - знак экстрасенса.

Ячейка 3 - точность, конкретность, организованность, аккуратность, пунктуальность, чистоплотность, скупость, наклонность к постоянному «восстановлению справедливости».

Нарастание троек усиливает все эти качества. С ними человеку есть смысл искать себя в науках, особенно точных. Перевес троек порождает педантов, людей в футляре.

Ячейка 4 - здоровье. Это связано с экгрегором, то есть энергетическим пространством, наработанным предками и защищающим человека. Отсутствие четверок свидетельствует о болезненности человека.

  • 4 - здоровье среднее, необходимо закалять организм. Из видов спорта рекомендуются плавание и бег.
  • 44 - здоровье крепкое.
  • 444 и более - люди с очень крепким здоровьем.

Ячейка 5 - интуиция, ясновидение, начинающееся проявляться у таких людей уже на уровне трех пятерок.

Пятерок нет - канал связи с космосом закрыт. Эти люди часто

ошибаются.

  • 5 - канал связи открыт. Эти люди могут правильно рассчитать ситуацию извлечь из нее максимальную пользу.
  • 55 - сильно развита интуиция. Когда видят «вещие сны», могут предугадывать ход событий. Подходящие для них профессии - юрист, следователь.
  • 555 - почти ясновидящие.
  • 5555 - ясновидящие.

Ячейка 6 - заземленность, материальность, расчет, склонность к количественному освоению мира и недоверие к качественным скачкам и тем более к чудесам духовного порядка.

Шестерок нет - этим людям необходим физический труд, хотя они его, как правило, не любят. Они наделены неординарным воображением, фантазией, художественным вкусом. Тонкие натуры, они тем не менее способны на поступок.

  • 6 - могут заниматься творчеством или точными науками, но физический труд является обязательным условием существования.
  • 66 - люди очень заземлены, тянутся к физическому труду, хотя как раз для них он не обязателен; желательна умственная деятельность либо занятия искусством.
  • 666 - знак Сатаны, особый и зловещий знак. Эти люди обладают повышенным темпераментом, обаятельны, неизменно становятся в обществе центром внимания.
  • 6666 - эти люди в своих предыдущих воплощениях набрали слишком много заземленности, они очень много трудились и не представляют свою жизнь без труда. Если в их квадрате есть

девятки, им обязательно нужно заниматься умственной деятельностью, развивать интеллект, хотя бы получить высшее образование.

Ячейка 7 - количество семерок определяет меру таланта.

  • 7 - чем больше они работают, тем больше получают впоследствии.
  • 77 - очень одаренные, музыкальные люди, обладают тонким художественным вкусом, могут иметь склонность к изобразительному искусству.
  • 777 - эти люди, как правило, приходят на Землю ненадолго. Они добры, безмятежны, болезненно воспринимают любую несправедливость. Они чувствительны, любят мечтать, не всегда чувствуют реальность.
  • 7777 - знак Ангела. Люди с таким знаком умирают в младенчестве, а если и живут, то их жизни постоянно угрожает опасность.

Ячейка 8 - карма, долг, обязанность, ответственность. Количество восьмерок определяет степень чувства долга.

Восьмерок нет - у этих людей почти полностью отсутствует чувство долга.

  • 8 - натуры ответственные, добросовестные, точные.
  • 88 - у этих людей развитое чувство долга, их всегда отличает желание помочь другим, особенно слабым, больным, одиноким.
  • 888 - знак великого долга, знак служения народу. Правитель с тремя восьмерками добивается выдающихся результатов.
  • 8888 - эти люди обладают парапсихологическими способностями и исключительной восприимчивостью к точным наукам. Им открыты сверхъестественные пути.

Ячейка 9 - ум, мудрость. Отсутствие девяток - свидетельство того, что умственные способности крайне ограничены.

  • 9 - эти люди должны всю жизнь упорно трудиться, чтобы восполнить недостаток ума.
  • 99 - эти люди умны от рождения. Учатся всегда неохотно, потому что знания даются им легко. Они наделены чувством юмора с ироничным оттенком, независимые.
  • 999 - очень умны. К учению вообще не прикладывают никаких усилий. Прекрасные собеседники.
  • 9999 - этим людям открывается истина. Если у них к тому же развита интуиция, то они гарантированы от провала в любом из своих начинаний. При всем этом они, как правило, довольно приятны, так как острый ум делает их грубыми, немилосердными и жестокими.

Итак, составив магический квадрат Пифагора и зная значение всех комбинаций цифр, входящих в его ячейки, вы сможете в достаточной мере оценить те качества вашей натуры, которыми наделила матушка - природа.

Латинские квадраты

Не смотря на то, что математиков интересовали в основном магические квадраты наибольшее применение в науке и технике нашли латинские квадраты.

Латинским квадратом называется квадрат nхn клеток, в которых написаны числа 1, 2,…, n, притом так, что в каждой строке и каждом столбце встречаются все эти числа по одному разу. На рис.3 изображены два таких квадрата 4х4. Они обладают интересной особенностью: если один квадрат наложить на другой, то все пары получившихся чисел оказываются различными. Такие пары латинских квадратов называются ортогональными.

Задачу отыскания ортогональных латинских квадратов впервые поставил Л. Эйлер, причём в такой занимательной формулировке: “ Среди 36 офицеров поровну уланов, драгунов, гусаров, кирасиров, кавалергардов и гренадеров и кроме того поровну генералов, полковников, майоров, капитанов, поручиков и подпоручиков, причем каждый род войск представлен офицерами всех шести рангов. Можно ли выстроить всех офицеров в каре 6 х 6 так, чтобы в любой колонне и любой шеренге встречались офицеры всех рангов?”

Эйлер не смог найти решения этой задачи. В 1901 г. было доказано, что такого решения не существует. В то же время Эйлер доказал, что ортогональные пары латинских квадратов существуют для всех нечетных значений n и для таких четных значений n, которые делятся на 4. Эйлер выдвинул гипотезу, что для остальных значений n, то есть если число n при делении на 4 даст в остатке 2, ортогональных квадратов не существует. В 1901 г. было доказано, что ортогональных квадратов 6 6 не существует, и это усиливало уверенность в справедливости гипотезы Эйлера. Однако в 1959 г. помощью ЭВМ были найдены сначала ортогональные квадраты 10х10, потом 14х14, 18х18, 22х22. А затем было показано, что для любого n , кроме 6, существуют ортогональные квадраты nхn.

Магические и латинские квадраты - близкие родственники. Пусть мы имеем два ортогональных квадрата. Заполним клетки нового квадрата тех же размеров следующим образом. Поставим туда число n(a - 1)+b, где а - число в такой клетке первого квадрата, а b - число в такой же клетке второго квадрата. Нетрудно понять, что в полученном квадрате суммы чисел в строках и столбцах (но не обязательно на диагоналях) будут одинаковы.

Теория латинских квадратов нашла многочисленные применения как в самой математике, так и в ее приложениях. Приведем такой пример. Пусть мы хотим испытать 4 сорта пшеницы на урожайность в данной местности, причем хотим учесть влияние степени разреженности посевов и влияние двух видов удобрений. Для того разобьем квадратный участок земли на 16 делянок (рис.4). Первый сорт пшеницы посадим на делянках, соответствующих нижней горизонтальной полосе, следующий сорт - на четырех делянках, соответствующих следующей полосе, и т. д. (на рисунке сорт обозначен цветом). При этом максимальная густота посевов пусть будет на тех делянках, которые соответствуют левому вертикальному столбцу рисунка, и уменьшается при переходе вправо (на рисунке этому соответствует уменьшение интенсивности цвета). Цифры же, стоящие в клетках рисунка, пусть означают:

первая - количество килограммов удобрения первого вида, вносимого на этот участок, а вторая - количество вносимого удобрения второго вида. Нетрудно понять, что при этом реализованы все возможные пары сочетаний как сорта и густоты посева, так и других компонентов: сорта и удобрений первого вида, удобрений первого и второго видов, густоты и удобрений второго вида.

Использование ортогональных латинских квадратов помогает учесть все возможные варианты в экспериментах в сельском хозяйстве, физике, химии, технике.

квадрат магический пифагор латинский

Заключение

В настоящем реферате рассмотрены вопросы, связанные с историей развития одного из вопросов математики, занимавшего умы очень многих великих людей, - магических квадратов. Несмотря на то, что собственно магические квадраты не нашли широкого применения в науке и технике, они подвигли на занятия математикой множество незаурядных людей и способствовали развитию других разделов математики (теории групп, определителей, матриц и т.д.).

Ближайшие родственники магических квадратов - латинские квадраты нашли многочисленные применения как в математике, так и в ее приложениях при постановке и обработке результатов экспериментов. В реферате приведен пример постановки такого эксперимента.

В реферате также рассмотрен вопрос о квадрате Пифагора, представляющем исторический интерес и, возможно, полезном для составления психологического портрета личности.

Список литературы

  • 1. Энциклопедический словарь юного математика. М., «Педагогика», 1989г.
  • 2. М. Гарднер «Путешествие во времени», М., «Мир», 1990г.
  • 3. Физкультура и спорт № 10, 1998г.

Как решать магические квадраты?



Магическим квадратом принято называть головоломку наподобие судоку. Это квадрат, клетки которого заполнены числами так, чтобы сумма в конце любой строки, столбца и диагонали была одинаковой. В магических квадратах-головоломках некоторые числа пропущены, и требуется их расставить так, чтобы соблюсти описанное выше условие равной суммы. Как же решать магические квадраты?

Способы решения магических квадратов

Для того чтобы решение магических квадратов было верным, необходимо знать ту самую волшебную сумму, которая должна получаться при сложении чисел в строках, столбцах и диагоналях. После этого расставить недостающие числа становится существенно проще. Как же эту сумму найти?

Способ 1

Наипростейший вариант магического квадрата - когда одна из строк, один из столбцов или одна из диагоналей полностью заполнена числами. В таком случае остается только подсчитать сумму этих чисел и подбирать решения.

Способ 2

Сумму чисел на концах строк, столбцов и диагоналей можно высчитать по специальным формулам. При этом формула для квадратов с четным количеством ячеек в одной строке будет отличаться от квадратов с нечетным количеством ячеек.

Итак, для четных квадратов подходит формула:

  • n + ((n+1) * n * (n-1) / 2) , где n - количество ячеек в одной строке.

Для нечетных квадратов подходит формула:

  • n * (n 2 +1) / 2 , где n - также количество ячеек в одной строке.

Пример решения

Рассмотрим решения магического квадрата из девяти ячеек с числами от 1 до 9. Сначала подсчитаем сумму, которая должна получаться на концах. В одной строке у нас 3 ячейки, то есть n = 3. Подставляем значение в формулу:

  • 3 * (3 2 +1) / 2 = 3 * 10 / 2 = 15

Теперь подбираем числа так, чтобы сумма равнялась 15.

Далее алгоритм потребует немного пространственного воображения. Поставьте число 1 в середину верхней строки. Каждое следующее число мы ставим справа по диагонали вверх. Пробуем ставить 2. Но там нет ячеек, если мы подставим над нашим квадратом еще один такой же воображаемый, то число 2 окажется в правом нижнем углу этого
нового квадрата. Переносим ее в наш квадрат и ставим в правом нижнем углу. Число 3 также ставим справа по диагонали вверх - и там опять нет ячейки, при помощи воображаемого квадрата узнаем, что его место в середине левого столбца. Число 4 ставим по такому же принципу, но эта ячейка занята единицей - в этом случае ставим ее прямо под цифрой 3. Число 5 по диагонали вверх и вправо от 4 оказывается в самом центре, а число 6 в верхнем правом углу. Число 7 при помощи воображения должно было оказаться в левом нижнем углу. Но там уже стоит 4, поэтому ставим ее прямо под числом 6. Число 8 оказывается при помощи воображаемого квадрата в левом верхнем углу, а число 9 в оставшейся ячейке в середине правого столбца. Общий алгоритм таков: ставим следующее число справа вверху по диагонали, если нет места - применяем воображаемый квадрат, а если ячейка занята, то ставим число прямо под предыдущим.

ХIII научно-практическая конференция школьников

«Магические квадраты»

Ученицы 8 «А» класса

ПТП лицея

Шолоховой Анны

Руководитель Анохина М.Н.


История создания моей работы………………………………………………2

Магический квадрат.......................................................................3

Исторически значимые магические квадраты...................4-5

КВАДРАТ, НАЙДЕННЫЙ В КХАДЖУРАХО(ИНДИЯ).........6

Магический квадрат Ян Хуэя (Китай).........................................7

Квадрат Альбрехта Дюрера...........................................................8

Квадраты Генри Э. Дьюдени и Аллана У. Джонсона-мл.....9

Дьявольский магический квадрат.........................................10-11

ПРАВИЛА ПОСТРОЕНИЯ МАГИЧЕСКИХ КВАДРАТОВ.....12

СОСТАВЛЕНИЕ МАГИЧЕСКИХ КВАДРАТОВ......................13-15

Создание магического квадрата Альбрехта Дюрера. .....17-18

Судоку............................................................................................19-21 Какуро............................................................................................22-23

БАНК ЗАДАЧ..................................................................24-25

Выводы................................................................................26 Литература...........................................................................27

История создания моей работы .

Раньше я даже не задумывалась, что такое можно придумать. Первый раз магические квадраты встретились мне в первом классе в учебнике, они были самые простые.
7
8 0
5

Через несколько лет с родителями я поехала на море познакомилась с девочкой, которая увлекалась судоку. Мне тоже захотелось научиться, и она объяснила, как это делать. Это занятие мне очень понравилось, и оно стало моим так называемым хобби.

После того как мне предложили участвовать в научно-практической конференции, я сразу выбрала тему «Магические квадраты». В этой работу я включила исторический материал, разновидности, правила создания игру-загадку.
Магический квадрат.

Магический, или волшебный квадрат-это квадратная таблица, заполненная n числами, таким образом, что сумма чисел в каждой строке, в каждом столбце и на обеих диагоналях оказывается одинаковой. Нормальным называется магический квадрат, заполненный целыми числами от 1 до n .

Магические квадраты существуют для всех порядков, за исключением n=2, хотя случай n=1 тривиален - квадрат состоит из одного числа.

Сумма чисел в каждой строке, столбце и на диагоналях. Называется магической константой , М. Магическая константа нормального волшебного квадрата зависит только от n и определяется формулой.

Порядок n 3 4 5 6 7 8 9 10 11 12 13
М(n) 15 34 65 111 175 260 369 505 671 870 1105

Первые значения магических констант приведены в следующих таблице.

Исторически значимые магические квадраты.

В китайской древней книге «Же-ким» («Книга перестановок») приводится легенда о том, что император Ню, живший 4 тысячи лет назад, увидел на берегу реки священную черепаху. На её панцире был изображен рисунок из белых и черных кружков(рис.1). Если заменить каждую фигуру числом, показывающим сколько в ней кружков, получится таблица.
4 9 2
3 5 7
8 1 6

У этой таблицы есть замечательное свойство. Сложим числа первого столбца: 4+3+8=15.тот же результат получится при сложении чисел второго, а так же третьего столбцов. Он же получается при сложении чисел любой из трех строк. Мало этого, тот же ответ 15 получается, если сложить числа каждой из двух диагоналей: 4+5+6=8+5+2=15.

Наверное, эту легенду китайцы придумали, когда нашли расположение чисел от 1 до 9 со столь замечательным свойством. Рисунок они назвали «ло-шу» и стали считать его магическим символом и употреблять при заклинаниях. Поэтому сейчас любую квадратную таблицу, составленную из чисел и обладающую таким свойством, называют магическим квадратом.

Рис.1



КВАДРАТ, НАЙДЕННЫЙ В КХАДЖУРАХО(ИНДИЯ).

Самый ранний уникальный магический квадрат обнаружен в надписи ХI века в индийском городе Кхаджурахо.

Это первый магический квадрат, относящийся к разновидности так называемых «дьявольских» квадратов.

Магический квадрат Ян Хуэя (Китай)

В XIII веке математик Ян Хуэй занялся проблемой методов построения магических квадратов. Его исследования были, потом продолжены другими китайскими математиками. Ян Хуэй рассматривал магические квадраты не только третьего, но и больших порядков.

Некоторые из его квадратов были достаточно сложны, однако он всегда давал правила для их построения. Он сумел построить магический квадрат шестого порядка.

Сумма чисел на любой горизонтали, вертикали и диагонали равна 34 . Эта сумма также встречается во всех угловых квадратах 2х2, в центральном квадрате (10+11+6+7), в квадрате из угловых клеток (16+13+4+1), в квадратах, построенных «ходом коня» (2+8+9+15 и 3+5+12+14), прямоугольниках, образованных парами средних клеток на противоположных сторонах (3+2+15+14 и 5+8+9+12).Большинство дополнительных симметрий связано с тем, что сумма любых двух центрально симметрично расположенных чисел равна 17.
Квадраты Генри Э. Дьюдени и Аллана У. Джонсона-мл.

Если в квадратную матрицу n х n заносится нестрого натуральный ряд чисел, то данный магический квадрат - нетрадиционный. Ниже представлены два таких магических квадрата, заполненные в основном простыми числами. Первый (рис.3) имеет порядок n=3 (квадрат Дьюдени); второй (рис.4) (размером 4х4)- квадрат Джонсона. Оба они были разработаны в начале двадцатого столетия.

Рис.3 рис.4

Дьявольский магический квадрат