Строительный портал - NikolskyAdm

Что означают высказывания. Оформление цитат, примеры

Логика высказываний , называемая также пропозициональной логикой - раздел математики и логики, изучающий логические формы сложных высказываний, построенных из простых или элементарных высказываний с помощью логических операций.

Логика высказываний отвлекается от содержательной нагрузки высказываний и изучает их истинностное значение, то есть является ли высказывание истинным или ложным.

Рисунок сверху - иллюстрация явления, известного как "Парадокс лжеца". При этом, на взгляд автора проекта, такие парадоксы возможны только в средах, несвободных от политических заморочек, где на ком-то могут априори поставить клеймо лжеца. В естественном многослойном мире на предмет "истины" или "лжи" оцениваются только отдельно взятые высказывания . И далее на этом уроке вам представится возможность самим оценить на этот предмет немало высказываний (а затем посмотреть правильные ответы). В том числе сложных высказываний, в которых более простые связаны между собой знаками логических операций. Но прежде рассмотрим сами эти операции над высказываниями.

Логика высказываний применяется в информатике и программировании в виде объявления логических переменных и присвоения им логических значений "ложь" или "истина", от которых зависит ход дальнейшего исполнения программы. В небольших программах, где задействована лишь одна логическая переменная, этой логической переменной часто даётся имя, например, "флаг" ("flag") и подразумевается, что "флаг поднят", когда значение этой переменной - "истина" и "флаг опущен", когда значение этой переменной - "ложь". В программах большого объёма, в которых несколько или даже очень много логических переменных, от профессионалов требуется придумывать имена логических переменных, имеющих форму высказываний и смысловую нагрузку, отличающую их от других логических переменных и понятных другим профессионалам, которые будут читать текст этой программы.

Так, может быть объявлена логическая переменная с именем "ПользовательЗарегистрирован" (или его англоязычный аналог), имеющая форму высказывания, которой может быть присвоено логическое значение "истина" при выполнении условий, что данные для регистрации отправлены пользователем и эти данные программой признаны годными. В дальнейших вычислениях значения переменных могут меняться в зависимости от того, какое логическое значение ("истина" или "ложь") имеет переменная "ПользовательЗарегистрирован". В других случах переменной, например, с именем "ДоДняХОсталосьБолееТрёхДней", может быть присвоено значение "Истина" до некоторого блока вычислений, а в ходе дальнейшего исполнения программы это значение может сохраняться или меняться на "ложь" и от значения этой переменной зависит ход дальнейшего исполнения программы.

Если в программе используются несколько логических переменных, имена которых имеют форму высказываний, и из них строятся более сложные высказывания, то намного проще разрабатывать программу, если перед её разработкой записать все операции с высказываний в виде формул, применяемых в логике высказываний, чем мы в ходе этого урока и займёмся.

Логические операции над высказываниями

Для математических высказываний всегда можно сделать выбор между двумя различными альтернативами "истина" и "ложь", а для высказываний, сделанных на "словесном" языке, понятия "истинности" и "ложности" несколько более расплывчаты. Однако, например, такие словесные формы, как "Иди домой" и "Идёт ли дождь?", не являются высказываниями. Поэтому понятно, что высказываниями являются такие словесные формы, в которых что-либо утверждается . Не являются высказываниями вопросительные или восклицательные предложения, обращения, а также пожелания или требования. Их невозможно оценить значениями "истина" и "ложь".

Высказывания же, напротив, можно рассмотривать как величину, которая может принимать два значения: "истина" и "ложь".

Например, даны суждения: "собака - животное", "Париж - столица Италии", "3

Первое из этих высказываний может быть оценено символом "истина", второе - "ложь", третье - "истина" и четвёртое - "ложь". Такая трактовка высказываний составляет предмет алгебры высказываний. Будем обозначать высказывания большими латинскими буквами A , B , ..., а их значения, то есть истину и ложь, соответственно И и Л . В обычной речи употребляются связи между высказываниями "и", "или" и другие.

Эти связи позволяют, соединяя между собой различные высказывания, образовывать новые высказывания - сложные высказывания . Например, связка "и". Пусть даны высказывания: "π больше 3" и высказывание "π меньше 4". Можно организовывать новое - сложное высказывание "π больше 3 и π меньше 4". Высказывание "если π иррационально, то π ² тоже иррационально" получается связыванием двух высказываний связкой "если - то". Наконец, мы можем получить из какого-либо высказывания новое - сложное высказывание - отрицая первоначальное высказывание.

Рассматривая высказывания как величины, принимающие значения И и Л , мы определим далее логические операции над высказываниями , которые позволяют из данных высказываний получать новые - сложные высказывания.

Пусть даны два произвольных высказывания A и B .

1 . Первая логическая операция над этими высказываниями - конъюнкция - представляет собой образование нового высказывания, которое будем обозначать A B и которое истинно тогда и только тогда, когда A и B истинны. В обычной речи этой операции соответствует соединение высказываний связкой "и".

Таблица истинности для конъюнкции:

A B A B
И И И
И Л Л
Л И Л
Л Л Л

2 . Вторая логическая операция над высказываниями A и B - дизъюнкция, выражаемая в виде A B , определяется следующим образом: оно истинно тогда и только тогда, когда хотя бы одно из первоначальных высказываний истинно. В обычной речи эта операция соответствует соединению высказываний связкой "или". Однако здесь мы имеем не разделительное "или", которое понимается в смысле "либо-либо", когда A и B не могут быть оба истинны. В определении логики высказываний A B истинно и при истинности лишь одного из высказываний, и при истинности обоих высказываний A и B .

Таблица истинности для дизъюнкции:

A B A B
И И И
И Л И
Л И И
Л Л Л

3 . Третья логическая операция над высказываниями A и B , выражаемая в виде A B ; полученное таким образом высказывание ложно тогда и только тогда, когда A истинно, а B ложно. A называется посылкой , B - следствием , а высказывание A B - следованием , называемая также импликацией. В обычной речи эта операция соответствует связке "если - то": "если A , то B ". Но в определении логики высказываний это высказывание всегда истинно независимо от того, истинно или ложно высказывание B . Это обстоятельство можно кратко сформулировать так: "из ложного следует всё, что угодно". В свою очередь, если A истинно, а B ложно, то всё высказывание A B ложно. Оно будет истинным тогда и только тогда, когда и A , и B истинны. Кратко это можно сформулировать так: "из истинного не может следовать ложное".

Таблица истинности для следования (импликации):

A B A B
И И И
И Л Л
Л И И
Л Л И

4 . Четвёртая логическая операция над высказываниями, точнее над одним высказыванием, называется отрицанием высказывания A и обозначается ~ A (можно встретить также употребление не символа ~, а символа ¬, а также верхнего надчёркивания над A ). ~ A есть высказывание, которое ложно, когда A истинно, и истинно, когда A ложно.

Таблица истинности для отрицания:

A ~ A
Л И
И Л

5 . И, наконец, пятая логическая операция над высказываниями называется эквивалентностью и обозначается A B . Полученное таким образом высказывание A B есть высказывание истинное тогда и только тогда, когда A и B оба истинны или оба ложны.

Таблица истинности для эквивалентности:

A B A B B A A B
И И И И И
И Л Л И Л
Л И И Л Л
Л Л И И И

В большинстве языков программирования есть специальные символы для обозначения логических значений высказываний, записываются они почти во всех языках как true (истина) и false (ложь).

Подытожим вышесказанное. Логика высказываний изучает связи, которые полностью определяются тем, каким образом одни высказывания строятся из других, называемых элементарными. Элементарные высказывания при этом рассматриваются как целые, не разложимые на части.

Систематизируем в таблице ниже названия, обозначения и смысл логических операций над высказываниями (они нам вскоре вновь понадобятся для решения примеров).

Связка Обозначение Название операции
не отрицание
и конъюнкция
или дизъюнкция
если..., то... импликация
тогда и только тогда эквивалентность

Для логических операций верны законы алгебры логики , которые можно использовать для упрощения логических выражений. При этом следует отметить, что в логике высказываний отвлекаются от смыслового содержания высказывания и ограничиваются рассмотрением его с той позиции, что оно либо истинно, либо ложно.

Пример 1.

1) (2 = 2) И (7 = 7) ;

2) Не(15 ;

3) ("Сосна" = "Дуб") ИЛИ ("Вишня" = "Клён") ;

4) Не("Сосна" = "Дуб") ;

5) (Не(15 20) ;

6) ("Глаза даны, чтобы видеть") И ("Под третьим этажом находится второй этаж") ;

7) (6/2 = 3) ИЛИ (7*5 = 20) .

1) Значение высказывания в первых скобках равно "истина", значение выражения во вторых скобках - также истина. Оба высказывания соединены логической операцией "И" (смотрим правила для этой операции выше), поэтому логическое значение всего данного высказывания - "истина".

2) Значение высказывания в скобках - "ложь". Перед этим зтим высказыванием стоит логическая операция отрицания, поэтому логическое значение всего данного высказывания - "истина".

3) Значение высказывания в первых скобках - "ложь", значение высказывания во вторых скобках - также "ложь". Высказывания соединены логической операцией "ИЛИ" и ни одно из высказываний не имеет значения "истина". Поэтому логическое значение всего данного высказывания - "ложь".

4) Значение высказывания в скобках - "ложь". Перед этим высказыванием стоит логическая операция отрицания. Поэтому логическое значение всего данного высказывания - "истина".

5) В первых скобках отрицается высказывание во внутренних скобках. Это высказывание во внутренних скобках имеет значение "ложь", следовательно, его отрицание будет иметь логическое значение "истина". Высказывание во вторых скобках имеет значение "ложь". Два этих высказывания соединены логической операцией "И", то есть получается "истина И ложь". Следовательно, логическое значение всего данного высказывания - "ложь".

6) Значение высказывания в первых скобках - "истина", значение высказывания во вторых скобках - также "истина". Два этих высказывания соединены логической операцией "И", то есть получается "истина И истина". Следовательно, логическое значение всего данного высказывания - "истина".

7) Значение высказывания в первых скобках - "истина". Значение высказывания во вторых скобках - "ложь". Два этих высказывания соединены логической операцией "ИЛИ", то есть получается "истина ИЛИ ложь". Следовательно, логическое значение всего данного высказывания - "истина".

Пример 2. Запишите с помощью логических операций следующие сложные высказывания:

1) "Пользователь не зарегистрирован";

2) "Сегодня воскресенье и некоторые сотрудники находятся на работе";

3) "Пользователь зарегистрирован тогда и только тогда, когда отправленные пользователем данные признаны годными".

1) p - одиночное высказывание "Пользователь зарегистрирован", логическая операция: ;

2) p - одиночное высказывание "Сегодня воскресенье", q - "Некоторые сотрудники находятся на работе", логическая операция: ;

3) p - одиночное высказывание "Пользователь зарегистрирован", q - "Отправленные пользователем данные признаны годными", логическая операция: .

Решить примеры на логику высказываний самостоятельно, а затем посмотреть решения

Пример 3. Вычислите логические значения следующих высказываний:

1) ("В минуте 70 секунд") ИЛИ ("Работающие часы показывают время") ;

2) (28 > 7) И (300/5 = 60) ;

3) ("Телевизор - электрический прибор") И ("Стекло - дерево") ;

4) Не((300 > 100) ИЛИ ("Жажду можно утолить водой")) ;

5) (75 < 81) → (88 = 88) .

Пример 4. Запишите с помощью логических операций следующие сложные высказывания и вычислите их логические значения:

1) "Если часы неправильно показывают время, то можно невовремя прийти на занятия";

2) "В зеркале можно увидеть своё отражение и Париж - столица США";

Пример 5. Определите логическое значение выражения

(p q ) ↔ (r s ) ,

p = "278 > 5" ,

q = "Яблоко = Апельсин" ,

p = "0 = 9" ,

s = "Шапка покрывает голову" .

Формулы логики высказываний

Понятие логической формы сложного высказывания уточняется с помощью понятия формулы логики высказываний .

В примерах 1 и 2 мы учились записывать с помощью логических операций сложные высказывания. Вообще-то они называются формулами логики высказываний.

Для обозначения высказываний, как и упомянутом примере, будем продолжать использовать буквы

p , q , r , ..., p 1 , q 1 , r 1 , ...

Эти буквы будут играть роль переменных, принимающих в качестве значений истинностные значения "истина" и "ложь". Эти переменные называются также пропозициональными переменными. Мы будем далее называть их элементарными формулами или атомами .

Для построения формул логики высказываний кроме указанных выше букв используются знаки логических операций

~, ∧, ∨, →, ↔,

а также символы, обеспечивающие возможность однозначного прочтения формул - левая и правая скобки.

Понятие формулы логики высказываний определим следуюшим образом:

1) элементарные формулы (атомы) являются формулами логики высказываний;

2) если A и B - формулы логики высказываний, то ~A , (A B ) , (A B ) , (A B ) , (A B ) тоже являются формулами логики высказываний;

3) только те выражения являются формулами логики высказываний, для которых это следует из 1) и 2).

Определение формулы логики высказываний содержит перечисление правил образования этих формул. Согласно определению, всякая формула логики высказываний либо есть атом, либо образуется из атомов в результате последовательного применения правила 2).

Пример 6. Пусть p - одиночное высказывание (атом) "Все рациональные числа являются действительными", q - "Некоторые действительные числа - рациональные числа", r - "некоторые рациональные числа являются действительными". Переведите в форму словесных высказываний следующие формулы логики высказываний:

6) .

1) "нет действительных чисел, которые являются рациональными";

2) "если не все рациональные числа являются действительными, то нет рациональных чисел, являющихся действительными";

3) "если все рациональные числа являются действительными, то некоторые действительные числа - рациональные числа и некоторые рациональные числа являются действительными";

4) "все действительные числа - рациональные числа и некоторые действительные числа - рациональные числа и некоторые рациональные числа являются действительными числами";

5) "все рациональные числа являются действительными тогда и только тогда, когда не имеет место быть, что не все рациональные числа являются действительными";

6) "не имеет места быть, что не имеет место быть, что не все рациональные числа являются действительными и нет действительных чисел, которые являются рациональными или нет рациональных чисел, которые являются действительными".

Пример 7. Составьте таблицу истинности для формулы логики высказываний , которую в таблице можно обозначить f .

Решение. Составление таблицы истинности начинаем с записи значений ("истина" или "ложь") для одиночных высказываний (атомов) p , q и r . Все возможные значения записываются в восемь строк таблицы. Далее, определяя значения операции импликации, и продвигаясь вправо по таблице, помним, что значение равно "лжи" тогда, когда из "истины" следует "ложь".

p q r f
И И И И И И И И
И И Л И И И Л И
И Л И И Л Л Л Л
И Л Л И Л Л И И
Л И И Л И Л И И
Л И Л Л И Л И Л
Л Л И И И И И И
Л Л Л И И И Л И

Заметим, что никакой атом не имеет вида ~A , (A B ) , (A B ) , (A B ) , (A B ) . Такой вид имеют сложные формулы.

Число скобок в формулах логики высказываний можно уменьшить, если принять, что

1) в сложной формуле будем опускать внешнюю пару скобок;

2) упорядочим знаки логических операций "по старшинству":

↔, →, ∨, ∧, ~ .

В этом списке знак ↔ имеет самую большую область действия, а знак ~ - самую маленькую. Под областью действия знака операции понимаются те части формулы логики высказываний, к которым применяется (на которые действует) рассматриваемое вхождение этого знака. Таким образом, можно опускать во всякой формуле те пары скобок, которые можно восстановить, учитывая "порядок старшинства". А при восстановлении скобок сначала расставляются все скобки, относящиеся ко всем вхождениям знака ~ (при этом мы продвигаемся слева направо), затем ко всем вхождениям знака ∧ и так далее.

Пример 8. Восстановите скобки в формуле логики высказываний B ↔ ~ C D A .

Решение. Скобки восстанавливаются пошагово следующим образом:

B ↔ (~ C ) ∨ D A

B ↔ (~ C ) ∨ (D A )

B ↔ ((~ C ) ∨ (D A ))

(B ↔ ((~ C ) ∨ (D A )))

Не всякая формула логики высказываний может быть записана без скобок. Например, в формулах А → (B C ) и ~ (A B ) дальнейшее исключение скобок невозможно.

Тавтологии и противоречия

Логические тавтологии (или просто тавтологии) - это такие формулы логики высказываний, что если буквы произвольным образом заменить высказываниями (истинными или ложными), то в результате всегда получится истинное высказывание.

Так как истинность или ложность сложных высказываний зависит лишь от значений, а не от содержания высказываний, каждому из которых соответствует определённая буква, то проверку того, является ли данное высказывание тавтологией, можно подставить следующим способом. В исследуемом выражении на место букв подставляются значения 1 и 0 (соответственно "истина" и "ложь") всеми возможными способами и с использованием логических операций вычисляются логические значения выражений. Если все эти значения равны 1, то исследуемое выражение есть тавтология, а если хотя бы одна подстановка даёт 0, то это не тавтология.

Таким образом, формула логики высказываний, которая принимает значение "истина" при любом распределении значений входящих в эту формулу атомов, называется тождественно истинной формулой или тавтологией .

Противоположный смысл имеет логическое противоречие. Если все значения высказываний равны 0, то выражение есть логическое противоречие.

Таким образом, формула логики высказываний, которая принимает значение "ложь" при любом распределении значений входящих в эту формулу атомов, называется тождественно ложной формулой или противоречием .

Кроме тавтологий и логических противоречий существуют такие формулы логики высказываний, которые не являются ни тавтологиями, ни противоречиями.

Пример 9. Составьте таблицу истинности для формулы логики высказываний и определите, является ли она тавтологией, противоречием или ни тем, ни другим.

Решение. Составляем таблицу истинности:

И И И И И
И Л Л Л И
Л И Л И И
Л Л Л Л И

В значениях импликации не встречаем строку, в которой из "истины" следует "ложь". Все значения исходного высказывания равны "истине". Следовательно, данная формула логики высказываний является тавтологией.

Цитата это включение автором в собственный текст элемента «чужого» высказывания. Встречается как в обиходе, так и в научном и в художественном тексте, а также - в широком смысле - в различных видах искусства, например, в кинематографическом. Обычно цитата является знаком другого произведения, представляя собой «свернутый» чужой текст или круг текстов, включающихся в смысловое поле нового произведения. Цитата может рассматриваться как родовое понятие для межтекстовых отношений, включающее в себя реминисценцию и аллюзию. Цитата имеет двойную функцию, одновременно являясь и элементом вновь создаваемого текста, и частью старого. Для того чтобы цитата могла рассматриваться как таковая, принципиально важна ее узнаваемость, эксплицированность. Г.А.Левинтон выделяет в семантике текста заимствования и цитату. Заимствованиями он называет такие включения чужеродного элемента в тексте, которые не меняют его смысла. Цитата же - необходимый элемент семантики. В отличие от реминисценции, цитата более закончена и отчетливо осознается как чужой текст, будучи обычно выделена графически, пунктуационно или синтаксически. Начало, окончание текста нередко сопровождаются цитатами (в начале они обычно выступают в качестве эпиграфа).

Цитата в художественной литературе

В художественной литературе цитата используется как для соотнесения с определенной традицией, так и для того, чтобы подчеркнуть разрыв с литературой прошлого . М.Л.Гаспаров и Е.Г.Рузина, исследуя центоны - жанр, характерный для поздней античности, представляющий собой мозаику цитат, приходят к выводу, что рассматриваемый жанр свидетельствует не об укорененности в традиции, но о «глубоком историко-культурном разрыве между материалом и его центонной обработкой» (Гаспаров). При цитировании важным становится приращение смысла: различие между смыслом, который текст имел в первоисточнике, и между тем, который получает в новом произведении. Цитируя, автор может обращаться к нескольким источникам, организуя сложный полилог. «Цитата есть цикада. Неумолкаемость ей свойственна» («Разговор о Данте», 1933), - писал О.Э.Мандельштам, у которого отсылки к мировой литературе - «упоминательной клавиатуре» - постоянны. Вторичность, невозможность собственного высказывания, идея «вечного возвращения» была предметом рефлексии поэтов-акмеистов. А.А.Ахматова писала: «Но, может быть, поэзия сама - Одна великолепная цитата» («Не повторяй - душа твоя богата…», 1956). В литературе 20 века цитатность, центонность являются приметами стиля многих. Так, роман французского писателя Жака Ривэ «Барышни из А.» (1979) состоит исключительно из цитат. Принципиальное отличие постмодернистской цитаты от классической в том, что ценностная позиция автора, проявляясь в приемах сталкивания цитат друг с другом, не соотносится ни с одной из них; это - намеренная цитатная нонселекция, где автор выступает как режиссер, организующий «чужие голоса».

        Основным понятием математической логики является понятие «простого высказывания». Под высказыванием обычно понимают всякое повествовательное предложение, утверждающее что-либо о чем-либо, и при этом мы можем сказать, истинно оно или ложно в данных условиях места и времени. Логическими значениями высказываний являются «истина» и «ложь».

        Примеры высказываний.
        1) Москва стоит на Неве.
        2) Лондон - столица Англии.
        3) Сокол не рыба.
        4) Число 6 делится на 2 и на 3.

        Высказывания 2), 3), 4) истинны, а высказывание 1) ложно.
        Очевидно, предложение «Да здравствует Россия!» не является высказыванием.
        Различают два вида высказываний.
        Высказывание, представляющее собой одно утверждение, принято называть простым или элементарным. Примерами элементарных высказываний могут служить высказывания 1) и 2).
        Высказывания, которые получаются из элементарных с помощью грамматических связок «не», «и», «или», «если.... то...», «тогда и только тогда», принято называть сложными или составными.
        Так, высказывание 3) получается из простого высказывания «Сокол - рыба» с помощью отрицания «не», высказывание 4) образовано из элементарных высказываний «Число 6 делится на 2», «Число 6 делится на З», соединенных союзом «и».
        Аналогично сложные высказывания могут быть получены из простых высказываний с помощью грамматических связок «или», «тогда и только тогда».
        В алгебре логики все высказывания рассматриваются только с точки зрения их логического значения, а от их житейского содержания отвлекаются. Считается, что каждое высказывание либо истинно, либо ложно и ни одно высказывание не может быть одновременно истинным и ложным.
        Элементарные высказывания обозначаются малыми буквами латинского алфавита: х, у, z, ..., а, b, с, ...; истинное значение высказывания цифрой 1, а ложное значение - буквой цифрой 0.
        Если высказывание а истинно, то будем писать а = 1 , а если а ложно, то а = 0 .

Логические операции над высказываниями

Отрицание.

        Отрицанием высказывания х называется новое высказывание x , которое является истинным, если высказывание х ложно, и ложным, если высказывание х истинно.
        Отрицание высказывания х обозначается x читается «не х» или «неверно, что х» .
        Логические значения высказывания x можно описать с помощью таблицы.

        Таблицы такого вида принято называть таблицами истинности.
        Пусть х высказывание. Так как x также является высказыванием, то можно образовать отрицание высказывания x , то есть высказывание , которое называется двойным отрицанием высказывания х . Ясно, что логические значения высказываний х и совпадают.
        Например, для высказывания «Путин президент России» отрицанием будет высказывание «Путин не президент России», а двойным отрицанием будет высказывание «Неверно, что Путин не президент России».

Конъюнкция.

        Конъюнкцией (логическим умножением) двух высказываний х и у называется новое высказывание, которое считается истинным, если оба высказывания х и у истинны, и ложным, если хотя бы одно из них ложно.
        Конъюнкция высказываний х и у обозначается символом х&у (x∧y, ху) , читается «х и у» . Высказывания х и у называются членами конъюнкции.
        Логические значения конъюнкции описываются следующей таблицей истинности:


        Например, для высказываний «6 делится на 2», «6 делится на 3» их конъюнкцией будет высказывание «6 делится на 2 и 6 делится на 3», которое, очевидно, истинно.
        Из определения операции конъюнкции видно, что союз «и» в алгебре логики употребляется в том же смысле, что и в повседневной речи. Но в обычной речи не принято соединять союзом «и» два высказывания далеких друг от друга по содержанию, а в алгебре логики рассматривается конъюнкция двух любых высказываний.

Дизъюнкция

        Дизъюнкцией (логическим сложением) двух высказываний х и у называется новое высказывание, которое считается истинным, если хотя бы одно из высказываний х, у истинно, и ложным, если они оба ложны. Дизъюнкция высказываний х, у обозначается символом «x V у» , читается «х или у» . Высказывания х, у называются членами дизъюнкции.
        Логические значения дизъюнкции описываются следующей таблицей истинности:


        В повседневной речи союз «или» употребляется в различном смысле: исключающем и не исключающем. В алгебре логики союз «или» всегда употребляется в не исключающем смысле.

Импликация.

        Импликацией двух высказываний х и у называется новое высказывание, которое считается ложным, если х истинно, а у - ложно, и истинным во всех остальных случаях.
        Импликация высказываний х, у обозначается символом x→y , читается «если х, то у» или «из х следует у». Высказывание х называют условием или посылкой, высказывание у - следствием или заключением, высказывание x→y следованием или импликацией.
        Логические значения операции импликации описываются следующей таблицей истинности:


        Употребление слов «если.... то...» в алгебре логики отличается от употребления их в обыденной речи, где мы, как правило, считаем, что, если высказывание х ложно, то высказывание «Если х, то у» вообще не имеет смысла. Кроме того, строя предложение вида «если х, то у» в обыденной речи, мы всегда подразумеваем, что предложение у вытекает из предложения х . Употребление слов «если..., то...» в математической логике не требует этого, поскольку в ней смысл высказываний не рассматривается.
        Импликация играет важную роль в математических доказательствах, так как многие теоремы формулируются в условной форме «Если х, то у». Если при этом известно, что х истинно и доказана истинность импликации x→y , то мы вправе сделать вывод об истинности заключения у .

Эквивалентность.

        Эквивалентностью двух высказываний х и у называется новое высказывание, которое считается истинным, когда оба высказывания х, у либо одновременно истинны, либо одновременно ложны, и ложным во всех остальных случаях.
        Эквивалентность высказываний х, у обозначается символом x↔y , читается «для того, чтобы х, необходимо и достаточно, чтобы у» или «х тогда и только тогда, когда у». Высказывания х, у называются членами эквивалентности.
        Логические значения операции эквивалентности описываются следующей таблицей истинности:


        Эквивалентность играет важную роль в математических доказательствах. Известно, что значительное число теорем формулируется в форме необходимых и достаточных условий, то есть в форме эквивалентности. В этом случае, зная об истинности или ложности одного из двух членов эквивалентности и доказав истинность самой эквивалентности, мы зак­лючаем об истинности или ложности второго члена эквивалентности.

Алгебра в широком смысле этого слова - наука об общих операциях, аналогичных сложению и умножению, которые могут выполняться над разнообразными математическими объектами.

Многие математические объекты (целые и рациональные числа, многочлены, векторы, множества) вы изучаете в школьном курсе алгебры, где знакомитесь с такими разделами математики, как алгебра чисел, алгебра многочленов, алгебра множеств и т. д. Для информатики важен раздел математики, называемый алгеброй логики ; объектами алгебры логики являются высказывания .

Высказывание - это предложение на любом языке, содержание которого можно однозначно определить как истинное или ложное.

Пример:

Например, относительно предложений «Великий русский учёный М. В. Ломоносов родился в \(1711\) году» и «Two plus six is eight» можно однозначно сказать, что они истинны. Предложение «Зимой воробьи впадают в спячку» - ложно. Следовательно, эти предложения являются высказываниями.

В русском языке высказывания выражаются повествовательными предложениями.

Обрати внимание!

Но не всякое повествовательное предложение является высказыванием.

Пример:

Например, предложение «Это предложение является ложным» не является высказыванием, так как относительно него нельзя сказать, истинно оно или ложно, без того чтобы не получить противоречие. Действительно, если принять, что предложение истинно, то это противоречит сказанному. Если же принять, что предложение ложно, то отсюда следует, что оно истинно.

Побудительные и вопросительные предложения высказываниями не являются.

Например, не являются высказываниями такие предложения, как: «Запишите домашнее задание», «Как пройти в библиотеку?», «Кто к нам пришёл?».

Высказывания могут строиться с использованием знаков различных формальных языков - математики, физики, химии и т. п.

Примерами высказываний могут служить:

«Nа - металл» (истинное высказывание);

«Второй закон Ньютона выражается формулой \(F = ma\) (истинное высказывание);

«Периметр прямоугольника с длинами сторон \(а\) и \(b\) равен \(аb\)» (ложное высказывание).

Не являются высказываниями числовые выражения, но из двух числовых выражений можно составить высказывание, соединив их знаками равенства или неравенства. Например:

  • 3 + 5 = 2 ⋅ 4 (истинное высказывание);
  • «II + VI > VIII» (ложное высказывание).

Не являются высказываниями и равенства или неравенства, содержащие переменные.

Например, предложение \(«x < 12»\) становится высказыванием только при замене переменной каким-либо конкретным значением: \(«5 < 12»\) - истинное высказывание; \(«12 < 12»\) - ложное высказывание.

Обоснование истинности или ложности высказываний решается теми науками, к сфере которых они относятся. Алгебра логики отвлекается от смысловой содержательности высказываний. Её интересует только то, истинно или ложно данное высказывание. В алгебре логики высказывания обозначают буквами и называют логическими переменными . При этом, если высказывание истинно, то значение соответствующей ему логической переменной обозначают единицей \((А = 1)\), а если ложно - нулём \((В = 0)\).

\(0\) и \(1\), обозначающие значения логических переменных, называются логическими значениями .

Основным (неопределяемым) понятием математической логики является понятие «простого высказывания».

Под высказыванием обычно понимают всякое повествовательное предложение, утверждающее что-либо о чем-либо, и при этом мы можем сказать, истинно оно или ложно в данных условиях места и времени. Логическими значениями высказываний являются «истина» и «ложь».

Приведем примеры высказываний:

1) Новгород стоит на Волхове.

2) Париж – столица Англии.

3) Карась не рыба.

4) Число 6 делится на 2 и на 3.

5) Если юноша окончил среднюю школу, то он получает аттестат зрелости.

Высказывания 1), 4), 5) истинны, а 2) и 3) – ложны.

Очевидно, предложение «Да здравствуют наши спортсмены!» не является высказыванием.

Высказывание, представляющее собой одно утверждение, принято называть простым или элементарным. Примерами элементарных высказываний могут служить высказывания 1) и 2).

Высказывания, которые получаются из элементарных с помощью грамматических связок «не», «и», «или», «если …, то …», «тогда и только тогда», принято называть сложными или составными. Так, высказывание 3) получается из простого высказывания «Карась – рыба» с помощью отрицания «не», высказывание 4) образовано из элементарных высказываний «Число 6 делится на 2», «Число 6 делится на 3», соединенных союзом «и». Высказывание 5) получается из простых высказываний «Юноша окончил среднюю школу», «Юноша получает аттестат зрелости» с помощью грамматической связки «если …,
то …». Аналогично сложные высказывания могут быть получены из простых высказываний с помощью грамматических связок «или», «тогда и только тогда».

В алгебре логики все высказывания рассматриваются только с точки зрения их логического значения, а от их житейского содержания отвлекаются. Считается, что каждое высказывание либо истинно, либо ложно и ни одно высказывание не может быть одновременно истинным и ложным.

В дальнейшем будем элементарные высказывания обозначать буквами латинского алфавита: a,b,c,…,x,y,z,…; истинное значение – буквой И или цифрой 1, а ложное значение – буквой Л или цифрой 0.

Если высказывание а истинно, то будем писать а=1 , если же ложно, то а=0 .

Логические высказывания принято подразделять на два вида: элементарные логические высказывания исоставные логические высказывания.

Составное логическое высказывание - это высказывание, образованное из других высказываний с помощью логических связок.

Логическая связка - это любая логическая операция над высказыванием. Например, употребляемые в обычной речи слова и словосочетания «не», «и», «или», «если… , то», «тогда и только тогда» являются логическими связками.

Элементарные логические высказывания - это высказывания не относящиеся к составным.

Примеры: «Иванов - футболист» - элементарные логические высказывания. «Иванов - футболист и шахматист» - составное логическое высказывание, состоящие из двух элементарных высказываний, связанных между собой при помощи связки «и».

46. Элементы алгебры логики

Алгебра логики – это раздел математической логики, значения всех элементов (функций и аргументов) которой определены в двухэлементном множестве: 0 и 1. Алгебра логики оперирует с логическими высказываниями.

Высказывание – это любое предложение, в отношении которого имеет смысл утверждение о его истинности или ложности. При этом считается, что высказывание удовлетворяет закону исключенного третьего, то есть каждое высказывание или истинно, или ложно и не может быть одновременно и истинным и ложным.

Высказывания:

– “Сейчас идет снег” – это утверждение может быть истинным или ложным;

– “Вашингтон – столица США” – истинное утверждение;

– “Частное от деления 10 на 2 равно 3” ложное утверждение.

В алгебре логики все высказывания обозначают буквами а, b, с ит. д. Содержание высказываний учитывается только при введении их буквенных обозначений, и в дальнейшем над ними можно производить любые действия, предусмотренные данной алгеброй. Причем если над исходными элементами алгебры выполнены некоторые разрешенные в алгебре логики операции, то результаты операций также будут элементами этой алгебры.

Простейшими операциями в алгебре логики являются операции логического сложения (иначе: операция ИЛИ (OR),операция дизъюнкции) и логического умножения (иначе: операция И (AND), операция конъюнкции). Для обозначения операции логического сложения используют символы + или V, а логического умножения – символы или Правила выполнения операций в алгебре логики определяются рядом аксиом, теорем и следствий. В частности, для алгебры логики применимы законы:

1. Сочетательный:

47. (a + b) + с = а + (b + с ),

48. (а b) с = а (b с ).

2. Переместительный:

49. (а + b) = (b + a),

50. b) = (b а).

3. Распределительный:

51. а (b + с) = а b + (a с),

52. (а + b) с = а с + b с.

Справедливы соотношения, в частности:

53. а + а = аа + b = b, если а ≤ b,

54. а а = аа b = а , если a b,

a + a b = aa b = b, если а b ,

а + b = а, если а b.

Наименьшим элементом алгебры логики является 0, наибольшим элементом – 1. В алгебре логики также вводится еще одна операция – отрицания (операция НЕ (NOT) , инверсия), обозначаемая чертой над элементом.

По определению

Функция в алгебре логики – выражение, содержащее элементы алгебры логики а, b, с и др., связанные операциями, определенными в этой алгебре. Примеры логических функций:

и т. д. Эти соотношения используются для синтеза логических функций и вычислительных схем.