Строительный портал - NikolskyAdm

Квантовая оптика. Тепловое излучение

КВАНТОВАЯ ОПТИКА, раздел оптики, в котором для изучения свойств света и его взаимодействия с веществом используют принципы квантовой механики (корпускулярно-волновой дуализм, векторы состояния, представления Гейзенберга и Шрёдингера и т.д.).

Зарождение квантовой теории света относится к 1900 году, когда М. Плат для объяснения спектрального распределения электромагнитной энергии, излучаемой тепловым источником, постулировал поглощение и испускание её дискретными порциями. Идея дискретности легла в основу вывода формулы, носящей его имя, и послужила толчком для создания квантовой механики. Однако оставалось неясным, является ли источником дискретности вещество или сам свет. В 1905 году А. Эйнштейн опубликовал теорию фотоэффекта, в которой показал, что его можно объяснить, если свет рассматривать как поток частиц (квантов света), названных впоследствии фотонами. Фотоны имеют энергию Е =hv (h - постоянная Планка, v - частота света) и распространяются со скоростью света. Позднее Н. Бор показал, что атомы могут испускать свет дискретными порциями. Т.о., свет рассматривается и как электромагнитная волна, и как поток фотонов. Квантованное световое поле относится к статистическим объектам, и его состояние определяется в вероятностном смысле.

Создание в 1960 году лазера - принципиально нового источника излучения по сравнению с тепловым - стимулировало исследования статистических характеристик его излучения. Эти исследования связаны с измерением распределения фотонов лазерного излучения и когерентности поля. Нелазерные источники света являются, по существу, источниками случайных световых полей с гауссовой статистикой поля. Изучая статистику лазерного излучения, Р. Глаубер ввёл понятие когерентного состояния, которому хорошо соответствует излучение лазера, работающего в режиме над порогом генерации. В 1977 американский физик Дж. Кимбл впервые наблюдал так называемую антигруппировку фотонов (смотри ниже), которую можно было объяснить с помощью квантовой теории.

С конца 20 века квантовая оптика интенсивно развивается. Она тесно связана с нелинейной и атомной оптикой, квантовой теорией информации. Одним из наиболее удобных способов определения состояния светового поля является измерение корреляционных функций. Простейшая из них - полевая корреляционная функция, характеризующая связь полей в различных пространственно-временных точках. Она полностью характеризует поле теплового источника излучения, однако не позволяет отличить источники с другими статистическими свойствами от тепловых. В этом отношении важную роль играет корреляционная функция числа фотонов (интенсивностей) второго порядка g (2) (τ), содержащая сведения о распределении времён запаздывания τ испускания фотонов. С её помощью измеряют эффекты группировки и антигруппировки фотонов. Свет от источника поступает на светоделительную пластинку (рис. 1), после которой он подаётся на два фотодетектора. Регистрация фотона сопровождается появлением импульса на выходе детектора. Импульсы с детекторов поступают в устройство, которое измеряет время задержки между ними. Эксперимент повторяется много раз. Таким способом измеряют распределение времён задержки, которое связано с функцией g (2) (τ). На рисунке 2 изображена зависимость g (2) (τ) для трёх типичных источников света - теплового, лазера и резонансной флуоресценции. При τ → ∞ значения функций для теплового источника и резонансной флуоресценции приближаются к единице. Для лазерного излучения g (2) (τ)= 1 и статистика фотонов пуассоновская. Для теплового источника g (2) (0) = 2 и более вероятно обнаружить два фотона приходящими сразу друг за другом (эффект группировки фотонов). В случае резонансной флуоресценции вероятность испускания атомом сразу двух фотонов равна нулю (антигруппировка фотонов). Значение g (2) (0) = 0 обусловлено тем, что между двумя последовательными актами излучения фотонов одним атомом существует время задержки. Этот эффект объясняется полной квантовой теорией, которая с квантовой точки зрения описывает и среду, и электромагнитное поле.

С эффектом антигруппировки тесно связана субпуассоновская статистика фотонов, для которой функция распределения уже, чем пуассоновское распределение. Поэтому уровень флуктуаций в фотонных пучках с субпуассоновской статистикой меньше уровня флуктуаций когерентного излучения. В предельном случае такие неклассические поля имеют строго определённое число фотонов (так называемое фоковское состояние поля). В квантовой теории число фотонов является дискретной переменной.

Методами нелинейной оптики могут быть созданы неклассические световые поля, у которых, по сравнению с когерентными полями, уменьшен уровень квантовых флуктуаций некоторых непрерывных переменных, например квадратурных компонент или стоксовых параметров, характеризующих состояние поляризации поля. Такие поля называют сжатыми. Интерпретировать формирование сжатых полей можно на классическом языке. Выразим напряжённость электрического поля Е через квадратурные компоненты а и b: Е(t) = а(t)cosωt + b(t)sinωt, где а(t) и b(t) - случайные функции, ω = 2πν - круговая частота, t - время. При подаче такого поля на вырожденный оптический параметрический усилитель (ВОПУ) с частотой накачки 2ω одна квадратурная компонента (например, а) может усиливаться благодаря его фазовой чувствительности, а другая квадратура (b) подавляться. Вследствие этого флуктуации в квадратуре а возрастают, а в квадратуре b уменьшаются. Трансформация уровня шума в ВОПУ изображена на рисунке 3. На рисунке 3,б область флуктуаций по сравнению с входным состоянием (рис. 3, а) сжата. Подобным образом ведут себя при параметрическом усилении квантовые флуктуации вакуумного и когерентного состояний. Конечно, в этом случае квантово-механическое соотношение неопределённостей не нарушается (происходит как бы перераспределение флуктуаций между квадратурами). В параметрических процессах формируется, как правило, излучение с суперпуассоновской статистикой фотонов, для которой уровень флуктуаций превышает таковой для когерентного света.

Для регистрации сжатых полей используют балансные гомодинные детекторы, которые могут регистрировать лишь одну квадратуру. Т.о., уровень флуктуаций при фотодетектировании сжатого света может быть ниже уровня стандартного квантового предела (дробового шума), соответствующего регистрации когерентного света. В сжатом свете флуктуации могут быть подавлены до 90% по отношению к когерентному состоянию. Методами нелинейной оптики получают также поляризационно-сжатый свет, в котором подавлены флуктуации, по крайней мере, в одном из стоксовых параметров. Сжатый свет представляет интерес для прецизионных оптико-физических экспериментов, в частности для регистрации гравитационных волн.

С квантовой точки зрения рассмотренный параметрический процесс представляет собой процесс распада фотона накачки с частотой 2ω на два фотона с частотой ω. Иначе говоря, фотоны в сжатом свете создаются пáрами (бифотоны), и функция их распределения радикально отличается от пуассоновской (имеется только чётное число фотонов). Это другое необычное свойство сжатого света на языке дискретных переменных.

Если фотоны накачки в параметрическом процессе распадаются на два фотона, которые различаются частотами и/или поляризациями, то такие фотоны коррелированы (связаны) между собой. Обозначим частоты родившихся фотонов как ω 1 и ω 2 , и пусть фотоны имеют соответственно вертикальную (V) и горизонтальную (Н) поляризации. Состояние поля в этом случае на квантовом языке записывается в виде |ψ) = |V) 1 |Н) 2 . Оказывается, что при определённой ориентации нелинейно-оптического кристалла, в котором наблюдается параметрический процесс, фотоны той же частоты, распространяющиеся в том же направлении, могут рождаться с ортогональными поляризациями. В результате состояние поля принимает вид:

(*)

(Появление коэффициента перед скобкой связано с условием нормировки.)

Состояние фотонов, описываемое соотношением (*), называют перепутанным; это означает, что если фотон частоты ω 1 поляризован вертикально, то фотон частоты ω 2 - горизонтально, и наоборот. Важное свойство перепутанного состояния (*) заключается в том, что измерение состояния поляризации одного фотона проектирует состояние фотона другой частоты в ортогональное. Состояния типа (*) называют также парами Эйнштейна - Подольского - Розена и перепутанными состояниями Белла. В перепутанном состоянии могут находиться квантовые состояния атомных систем, а также состояния атомов и фотонов. С применением фотонов в перепутанных состояниях проведены эксперименты по проверке неравенства Белла, квантовая телепортация и квантовое плотное кодирование.

На основе параметрических оптических взаимодействий, а также эффекта кросс-взаимодействий осуществлены квантовые неразрушающие измерения соответственно квадратурных компонент и числа фотонов. Применение методов квантовой оптики при обработке оптических изображений позволяет улучшить их запись, хранение и считывание (смотри Квантовая обработка изображений).

Квантовые флуктуации электромагнитного поля в вакуумном состоянии могут проявляться своеобразно: они приводят к возникновению силы притяжения между проводящими незаряженными пластинами (смотри Казимира эффект).

К квантовой оптике относят и теорию флуктуаций лазерного излучения. Её последовательная разработка базируется на квантовой теории, которая даёт корректные результаты для статистики фотонов и ширины линии лазерного излучения.

Квантовая оптика занимается также исследованиями взаимодействия атомов со световым полем, воздействия света на двух- и трёхуровневые атомы. При этом обнаружен ряд интересных и неожиданных эффектов, связанных с атомной когерентностью: квантовые биения (смотри Интерференция состояний), Ханле эффект, фотонное эхо и др.

В квантовой оптике изучают также охлаждение атомов при взаимодействии со светом и получение бозе-эйнштейновского конденсата, а также механическое воздействие света на атомы с целью их захвата и управления.

Лит.: Клышко Д. Н. Неклассический свет // Успехи физических наук. 1996. Т. 166. Вып. 6; Баргатин И. В., Гришанин Б. А., Задков В. Н. Запутанные квантовые состояния атомных систем // Там же. 2001. Т. 171. Вып. 6; Физика квантовой информации / Под редакцией Д. Боумейстера и др. М., 2002; Скалли М. О., Зубайри М. С. Квантовая оптика. М., 2003; Шляйх В. П. Квантовая оптика в фазовом пространстве. М., 2005.

ТЕПЛОВОЕ ИЗЛУЧЕНИЕ. КВАНТОВАЯ ОПТИКА

Тепловое излучение

Излучение телами электромагнитных волн может осуществляться за счет различных видов энергии. Самым распространенным является тепловое излучение , т. е. испускание электромагнитных волн за счет внутренней энергии тела. Все остальные виды излучения, объединяются под общим названием «люминесценция». Тепловое излучение имеет место при любой температуре, однако при невысоких температурах излучаются практически лишь электромагнитные волны инфракрасного диапазона.

Окружим излучающее тело оболочкой, внутренняя поверхность которого отражает все падающее на нее излучение. Воздух из оболочки удален. Отраженное оболочкой излучение частично или полностью поглощается телом. Следовательно, будет происходить непрерывный обмен энергией между телом и заполняющим оболочку излучением.

Равновесное состояние системы «тело – излучение» соответствует условию, когда распределение энергии между телом и излучением остается неизменным для каждой длины волны. Такое излучение принято называть равновесным излучением . Экспериментальные исследования показывают, что единственным видом излучения, которое может находиться в равновесии с излучающими телами, является тепловое излучение. Все остальные виды излучения оказываются неравновесными. Способность теплового излучения находиться в равновесии с излучающими телами обусловлена тем, что его интенсивность возрастает при повышении температуры.

Предположим, что равновесие между телом и излучением нарушено и тело излучает энергию большую, чем поглощает. Тогда внутренняя энергия тела будет убывать, что приведет к уменьшению температуры. Это, в свою очередь, приведет к уменьшению излучаемой телом энергии. Если равновесие нарушится в другую сторону, т. е. излучаемой энергии окажется меньше, чем поглощаемой, температура тела будет возрастать до тех пор, пока снова не установится равновесие.

Из всех видов излучения равновесным может быть только тепловое излучение . К равновесным состояниям и процессам применимы законы термодинамики. Поэтому тепловое излучение подчиняется общим закономерностям, вытекающим из принципов термодинамики. К рассмотрению этих закономерностей мы и перейдем.

Формула Планка

В 1900 г. немецкому физику Максу Планку удалось найти вид функции , в точности соответствующий опытным данным. Для этого ему пришлось сделать предположение, совершенно чуждое классическим представлениям, а именно, допустить, что электромагнитное излучение испускается в виде отдельных порций энергии (квантов), пропорциональных частоте излучения:

где n – частота излучения; h – коэффициент пропорциональности, получивший название постоянной Планка, h = 6.625 × 10-34 Дж × с; = h /2p =
= 1.05 × 10–34 Дж × с = 6.59 × 10-14 эВ × с; w = 2pn – круговая частота. При этом, если излучение испускается квантами , то его энергия e n должна быть кратной этой величине:

Плотность распределения радиационных осцилляторов была подсчитана Планком классически. Согласно распределению Больцмана, число частиц N n , энергия каждой из которых равна e n , определяется формулой

, n = 1, 2, 3… (4.2)

где А – нормировочный множитель; k – постоянная Больцмана. Используя определение среднего значения дискретных величин, получаем выражение для средней энергии частиц, которое равно отношению полной энергии частиц к полному числу частиц:

где число частиц, обладающих энергией . С учетом (4.1) и (4.2) выражение для среднего значения энергии частиц имеет вид

.

Последующие преобразования приводят к соотношению

.

Таким образом, функция Кирхгофа, с учетом (3.4), имеет вид

. (4.3)

Формула (4.3) называется формулой Планка. Эта формула согласуется с экспериментальными данными во всем интервале частот от 0 до . В области малых частот, согласно правилам приближенных вычислений, при (): » и выражение (4.3) преобразуется в формулу Рэлея – Джинса.

Опыт Боте. Фотоны

Чтобы объяснить распределение энергии в спектре равновесного теплового излучения, достаточно, как показал Планк, допустить, что свет испускается квантами. Для объяснения фотоэффекта достаточно предположить, что свет поглощается такими же порциями. Эйнштейн выдвинул гипотезу, что свет и распространяется в виде дискретных частиц, названных первоначально световыми квантами. Впоследствии эти частицы получили название фотонов (1926 г.). Гипотезу Эйнштейна непосредственно подтвердил опыт Боте (рис. 6.1).

Тонкая металлическая фольга (Ф) помещалась между двумя газоразрядными счетчиками (Сч). Фольга освещалась пучком рентгеновских лучей с небольшой интенсивностью, под действием которых она сама становилась источником рентгеновских лучей.

Вследствие малой интенсивности первичного пучка количество квантов, испускаемых фольгой, было невелико. При попадании в счетчик рентгеновских лучей запускался особый механизм (М), делавший отметку на движущейся ленте (Л). Если бы излучаемая энергия распространялась равномерно во все стороны, как это следует из волновых представлений, оба счетчика должны были бы срабатывать одновременно и отметки на ленте приходились бы одна против другой.

В действительности же наблюдалось совершенно беспорядочное расположение отметок. Это можно объяснить лишь тем, что в отдельных актах испускания возникают световые частицы, летящие то в одном, то в другом направлении. Так было доказано существование особых световых частиц – фотонов.

Энергия фотона определяется его частотой

. (6.1)

Электромагнитная волна, как известно, обладает импульсом. Соответственно, и фотон должен обладать импульсом (p ). Из соотношения (6.1) и общих принципов относительности вытекает, что

. (6.2)

Такое соотношение между импульсом и энергией возможно только для частиц с нулевой массой покоя, движущихся со скоростью света. Таким образом: 1) масса покоя фотона равна нулю; 2) фотон движется со скоростью света. Сказанное означает, что фотон представляет собой частицу особого рода, отличную от таких частиц, как электрон, протон и т. п., которые могут существовать, двигаясь со скоростями, меньшими с , и даже покоясь. Выразив в (6.2) частоту w через длину волны l, получим:

,

где – модуль волнового вектора k . Фотон летит в направлении распространения электромагнитной волны. Поэтому направления импульса р и волнового вектора k совпадают:

Пусть на полностью поглощающую свет поверхность падает поток фотонов, летящих по нормали к поверхности. Если концентрация фотонов равна N , то на единицу поверхности падает в единицу времени Nc фотонов. При поглощении каждый фотон сообщает стенке импульс р = Е /с . Импульс, сообщаемый в единицу времени единице поверхности, т. е. давление Р света на стенку

.

Произведение равно энергии фотонов, заключенных в единице объема, т. е. плотности электромагнитной энергии w. Таким образом, давление, оказываемое светом на поглощающую поверхность, равно объемной плотности электромагнитной энергии P = w .

При отражении от зеркальной поверхности фотон сообщает ей импульс 2р . Поэтому для абсолютно отражающей поверхности P = 2w .

Эффект Комптона

Импульс фотона слишком мал и не поддается прямому измерению. Однако при столкновении фотона со свободным электроном величину передаваемого импульса уже можно измерить. Процесс рассеяния фотона на свободном электроне называется эффектом Комптона . Выведем соотношение, связывающее длину волны рассеянного фотона с углом рассеяния и длиной волны фотона до соударения. Пусть фотон с импульсом р и энергией Е = pc сталкивается с неподвижным электроном, энергия которого . После соударения импульс фотона равен и направлен под углом Q, как показано на рис. 8.1.

Импульс электрона отдачи будет равен , и полная релятивистская энергия . Здесь мы используем релятивистскую механику, поскольку скорость электрона может достигать значений, близких к скорости света.

Согласно закону сохранения энергии или , преобразуется к виду

. (8.1)

Запишем закон сохранения импульса:

Возведем (8.2) в квадрат: и вычтем это выражение из (8.1):

. (8.3)

Учитывая, что релятивистская энергия , можно показать, что правая часть выражения (8.2) равна . Тогда после преобразования импульс фотона равен

.

Переходя к длинам волн p = = h /l, Dl = l - l¢, получаем:

,

или окончательно:

Величина называется комптоновской длиной волны. Для электрона комптоновская длина волны lc = 0.00243 нм.

В своем опыте Комптон использовал рентгеновское излучение с известной длиной волны и обнаружил, что у рассеянных фотонов длина волны увеличивается. На рис. 8.1 приведены результаты экспериментального исследования рассеяния монохроматического рентгеновского излучения на графите. Первая кривая (Q = 0°) характеризует первичное излучение. Остальные кривые относятся к разным углам рассеяния Q, значения которых указаны на рисунке. По оси ординат отложена интенсивность излучения, по оси абсцисс длина волны. На всех графиках присутствует несмещенный компонент излучения (левый пик). Его наличие объясняется рассеянием первичного излучения на связанных электронах атома.

Эффект Комптона и внешний фотоэффект подтвердили гипотезу о квантовой природе света, т. е. свет действительно ведет себя так, как если бы он состоял из частиц, энергия которых h n и импульс h /l. Вместе с тем, явления интерференции и дифракции света могут быть объяснены с позиции волновой природы. Оба эти подхода в настоящий момент представляются взаимодополняющими друг друга.

Принцип неопределенности

В классической механике состояние материальной точки определяется заданием значений координат и импульса. Своеобразие свойств микрочастиц проявляется в том, что не для всех переменных при измерениях получаются определенные значения. Так, например, электрон (и любая другая микрочастица) не может иметь одновременно точных значений координаты х и компоненты импульса . Неопределенности значений х и удовлетворяют соотношению

. (11.1)

Из (11.1) следует, что, чем меньше неопределенность одной из переменных (х или ), тем больше неопределенность другой. Возможно такое состояние, когда одна из переменных имеет точное значение, а другая переменная при этом оказывается совершенно неопределенной.

Соотношение, аналогичное (11.1), имеет место для у и , z и , а также для ряда других пар величин (такие пары величин называются канонически сопряженными). Обозначив канонически сопряженные величины буквами А и В , можно написать

. (11.2)

Соотношение (11.2) называется принципом неопределенности для величин А и В . Это соотношение сформулировал В. Гейзенберг в 1927 г. Утверждение о том, что произведение неопределенностей значений двух канонически сопряженных переменных не может быть по порядку величины меньше постоянной Планка, называется принципом неопределенности.

Энергия и время также являются канонически сопряженными величинами

Это соотношение означает, что определение энергии с точностью DЕ должно занять интервал времени, равный по меньшей мере .

Соотношение неопределенности можно проиллюстрировать следующим примером. Попытаемся определить значение координаты х свободно летящей микрочастицы, поставив на ее пути щель шириной Dх , расположенную перпендикулярно к направлению движения частицы.

До прохождения частицы через щель ее составляющая импульса имеет точное значение равное нулю (щель по условию перпендикулярна к направлению импульса), так что , зато координата х частицы явля­ет­ся совершенно неопределен­ной (рис. 11.1).

В момент прохождения частицы через щель положение меняется. Вместо полной неопределенности координаты х появляется неопределенность Dх, но это достигается ценой утраты определенности значения . Действительно, вследствие дифракции имеется некоторая вероятность того, что частица будет двигаться в пределах угла 2j, где j – угол, соответствующий первому дифракционному максимуму (максимумами высших порядков можно пренебречь, поскольку их интенсивность мала по сравнению с интенсивностью центрального максимума). Таким образом, появляется неопределенность

.

Краю центрального дифракционного максимума (первому минимуму), получающемуся от щели шириной Dх , соответствует угол j, для которого

Следовательно, , и получаем

.

Движение по траектории характеризуется вполне определенными значениями координат и скорости в каждый момент времени. Подставив в (11.1) вместо произведение , получим соотношение

.

Очевидно, что чем больше масса частицы, тем меньше неопределенности ее координаты и скорости и, следовательно, с тем большей точностью применимо понятие траектории. Уже для макрочастицы размером 1 мкм неопределенности значений х и оказываются за пределами точности измерения этих величин, так что ее движение будет практически неотличимо от движения по траектории.

Принцип неопределенности является одним из фундаментальных положений квантовой механики.

Уравнение Шредингера

В развитие идеи де-Бройля о волновых свойствах вещества австрийский физик Э. Шредингер получил в 1926 г. уравнение, названное впоследствии его именем. В квантовой механике уравнение Шредингера играет такую же фундаментальную роль, как законы Ньютона в классической механике и уравнения Максвелла в классической теории электромагнетизма. Оно позволяет найти вид волновой функции частиц, движущихся в различных силовых полях. Вид волновой функции или Y-функции получается из решения уравнения, которое выглядит следующим образом

Здесь m – масса частицы; i – мнимая единица; D – оператор Лапласа, результат действия которого на некоторую функцию представляет собой сумму вторых производных по координатам

Буквой U в уравнении (12.1) обозначена функция координат и времени, градиент которой, взятый с обратным знаком, определяет силу, действующую на частицу.

Уравнение Шредингера является основным уравнением нерелятивистской квантовой механики. Оно не может быть выведено из других уравнений. Если силовое поле, в котором движется частица, стационарно (т.е. постоянно во времени), то функция U не зависит от времени и имеет смысл потенциальной энергии. В этом случае решение уравнения Шредингера состоит из двух множителей, один из которых зависит только от координат, другой – только от времени

Здесь Е – полная энергия частицы, которая в случае стационарного поля остается постоянной; – координатная часть волновой функции. Чтобы убедиться в справедливости (12.2), подставим его в (12.1):

В результате получим

Уравнение (12.3) называется уравнением Шредингера для стационарных состояний .В дальнейшем мы будем иметь дело только с этим уравнением и для краткости будем называть его просто уравнением Шредингера. Уравнение (12.3) часто записывают в виде

В квантовой механике большую роль играет понятие оператора. Под оператором подразумевается правило, посредством которого одной функции, обозначим ее сопоставляется другая функция, обозначим ее f . Символически это записывается следующим образом

здесь – символическое обозначение оператора (можно было взять любую другую букву со «шляпкой» над ней, например и т. д.). В формуле (12.1) роль играет D, роль – функция , а роль f – правая часть формулы. Например, символ D означает двукратное дифференцирование по трем координатам, х , у , z , с последующим суммированием полученных выражений. Оператор может, в частности, представлять собой умножение исходной функции на некоторую функцию U . Тогда , следовательно, . Если рассматривать функцию U в уравнении (12.3) как оператор, действие которого на Y-функцию сводится к умножению на U , то уравнение (12.3) можно записать так:

В этом уравнении символом обозначен оператор, равный сумме операторов и U :

.

Оператор называют гамильтонианом (или оператором Гамильтона). Гамильтониан является оператором энергии Е . В квантовой механике другим физическим величинам также сопоставляются операторы. Соответственно, рассматриваются операторы координат, импульса, момента импульса и т. д. Для каждой физической величины составляется уравнение, аналогичное (12.4). Оно имеет вид

где – оператор, сопоставляемый g . Так, например, оператор импульса определяется соотношениями

; ; ,

или в векторном виде , где Ñ – градиент.

В разд. 10 мы уже обсуждали физический смысл Y-функции: квадрат модуля Y-функции (волновой функции) определяет вероятность dP того, что частица будет обнаружена в пределах объема dV :

, (12.5)

Поскольку квадрат модуля волновой функции равен произведению волновой функции на комплексно сопряженную величину , то

.

Тогда вероятность обнаружения частицы в объеме V

.

Для одномерного случая

.

Интеграл от выражения (12.5), взятый по всему пространству от до , равняется единице:

Действительно, этот интеграл дает вероятность того, что частица находится в одной из точек пространства, т. е. вероятность достоверного события, которая равна 1.

В квантовой механике принимается, что волновая функция допускает умножение на отличное от нуля произвольное комплексное число С , причем и С Y описывают одно и то же состояние частицы. Это позволяет выбрать волновую функцию так, чтобы она удовлетворяла условию

Условие (12.6) называется условием нормировки. Функции, удовлетворяющие этому условию, называются нормированными. В дальнейшем мы всегда будем полагать, что рассматриваемые нами Y-функции являются нормированными. В случае стационарного силового поля справедливо соотношение

т. е. плотность вероятности волновой функции равна плотности вероятности координатной части волновой функции и от времени не зависит.

Свойства Y-функции: она должна быть однозначной, непрерывной и конечной (за исключением, быть может, особых точек) и иметь непрерывную и конечную производную. Совокупность перечисленных требований носит название стандартных условий.

В уравнение Шредингера в качестве параметра входит полная энергия частицы Е . В теории дифференциальных уравнений доказывается, что уравнения вида имеют решения, удовлетворяющие стандартным условиям, не при любых, а лишь при некоторых определенных значениях параметра (т. е. энергии Е ). Эти значения называются собственными значениями . Решения, соответствующие собственным значениям, называются собственными функциями . Нахождение собственных значений и собственных функций, как правило, представляет собой весьма трудную математическую задачу. Рассмотрим некоторые наиболее простые частные случаи.

Частица в потенциальной яме

Найдем собственные значения энергии и соответствующие им собственные волновые функции для частицы, находящейся в бесконечно глубокой одномерной потенциальной яме (рис. 13.1, а ). Предположим, что частица

может двигаться только вдоль оси х . Пусть движение ограничено непроницаемыми для частицы стенками: х = 0 и х = l . Потенциальная энергия U = 0 внутри ямы (при 0 £ х £ l ) и вне ямы (при х < 0 и х > l ).

Рассмотрим стационарное уравнение Шредингера. Поскольку Y-функ­ция зависит только от координаты х , то уравнение имеет вид

За пределы потенциальной ямы частица попасть не может. Поэтому вероятность обнаружения частицы вне ямы равна нулю. Следовательно, и функция y за пределами ямы равна нулю. Из условия непрерывности следует, что y должна быть равна нулю и на границах ямы, т. е.

. (13.2)

Этому условию должны удовлетворять решения уравнения (13.1).

В области II (0 £ х £ l ), где U = 0 уравнение (13.1) имеет вид

Используя обозначение , придем к известному из теории колебаний волновому уравнению

.

Решение такого уравнения имеет вид

Условию (14.2) можно удовлетворить соответствующим выбором постоянных k и a. Из равенства получаем Þ a = 0.

(n = 1, 2, 3, ...), (13.4)

n = 0 исключено, поскольку при этом º 0, т. е. вероятность обнаружения частицы в яме равна нулю.

Из (13.4) получаем (n = 1, 2, 3, ...), следовательно,

(n = 1, 2, 3, ...).

Таким образом получаем, что энергия частицы в потенциальной яме может принимать только дискретные значения. На рис.13.1, б изображена схема энергетических уровней частицы в потенциальной яме. На этом примере реализуется общее правило квантовой механики: если частица локализована в ограниченной области пространства, то спектр значений энергии частицы дискретен, при отсутствии локализации спектр энергии непрерывен .

Подставим значения k из условия (13.4) в (13.3) и получим

Для нахождения константы а воспользуемся условием нормировки, которое в данном случае имеет вид

.

На концах промежутка интегрирования подынтегральная функция обращается в нуль. Поэтому значение интеграла можно получить, умножив среднее значение (равное, как известно, 1/2) на длину промежутка. Таким образом, получаем . Окончательно собственные волновые функции имеют вид

(n = 1, 2, 3, ...).

Графики собственных значений функций при различных n изображены на рис. 13.2. На этом же рисунке показана плотность вероятности yy * обнаружения частицы на различных расстояниях от стенок ямы.

Графики показывают, что в состоянии с n = 2 частица не может быть обнаружена в середине ямы и вместе с тем одинаково часто бывает как в левой, так и в правой половине ямы. Такое поведение частицы, несовместимо с представлением о траектории. Отметим, что, согласно классическим представлениям, все положения частицы в яме равновероятны.

Движение свободной частицы

Рассмотрим движение свободной частицы. Полная энергия Е движущейся частицы равна кинетической энергии (потенциальная энергия U = 0). Уравнение Шредингера для стационарного состояния (12.3) имеет в этом случае решение

задает поведение свободной частицы. Таким образом, свободная частица в квантовой механике описывается плоской монохроматической волной де‑Бройля с волновым числом

.

Вероятность обнаружить частицу в любой точке пространства найдем как

,

т. е. вероятность обнаружить частицу вдоль оси х везде постоянна .

Таким образом, если импульс частицы имеет определенное значение, то она, в соответствии с принципом неопределенности, с равной вероятностью может находиться в любой точке пространства. Иначе говоря, если импульс частицы точно известен, мы ничего не знаем о ее местонахождении.

В процессе измерения координаты частица локализуется измерительным прибором, поэтому область определения волновой функции (17.1) для свободной частицы ограничивается отрезком х. Плоскую волну уже нельзя считать монохроматической, имеющей одно определенное значение длины волны (импульса).

Гармонический осциллятор

В заключение рассмотрим задачу о колебаниях квантового гармонического осциллятора . Таким осциллятором являются частицы, совершающие малые колебания около положения равновесия.

На рис. 18.1, а изображен классический гармонический осциллятор в виде шарика массой m , подвешенного на пружине с коэффициентом жесткости k . Сила, действующая на шарик и ответственная за его колебания, связана с координатой х формулой . Потенциальная энергия шарика есть

.

Если шарик вывести из положения равновесия, то он совершает колеба­ния с частотой . Зависимость потенциальной энергии от координа­ты х показана на рис. 18.1, б .

Уравнение Шредингера для гармонического осциллятора имеет вид

Решение этого уравнения приводит к квантованию энергии осциллятора. Собственные значения энергии осциллятора определяются выражением

Как и в случае потенциальной ямы с бесконечно высокими стенками, минимальная энергия осциллятора отлична от нуля. Наименьшее возможное значение энергии при n = 0 называют энергией нулевых колебаний . Для классического гармонического осциллятора в точке с координатой x = 0 энергия равна нулю. Существование энергии нулевых колебаний подтверждается экспериментами по изучению рассеяния света кристаллами при низких температурах. Спектр энергий частицы оказывается эквидистантным , т. е. расстояние между уровнями энергии равно энергии колебаний классического осциллятора есть точка поворота частицы при колебаниях, т. е. .

График «классической» плотности вероятности изображен на рис. 18.3 пунктирной кривой. Видно, что, как и в случае потенциальной ямы, поведение квантового осциллятора существенным образом отличается от поведения классического.

Вероятность для классического осциллятора всегда максимальна вблизи точек поворота, а для квантового осциллятора вероятность максимальна в пучностях собственных Y-функций. К тому же квантовая вероятность оказывается отличной от нуля и за точками поворота, ограничивающими движение классического осциллятора.

На примере квантового осциллятора опять прослеживается упоминавшийся ранее принцип соответствия. На рис. 18.3 изображены графики для классической и квантовой плотностей вероятности при большом квантовом числе n . Хорошо видно, что усреднение квантовой кривой приводит к классическому результату.


Содержание

ТЕПЛОВОЕ ИЗЛУЧЕНИЕ. КВАНТОВАЯ ОПТИКА

1. Тепловое излучение..................................................................................... 3

2. Закон Кирхгофа. Абсолютно черное тело............................................. 4

3. Закон Стефана – Больцмана и закон Вина. Формула Рэлея – Джинса. 6

4. Формула Планка..................................................................................... 8

5. Явление внешнего фотоэффекта............................................................ 10

6. Опыт Боте. Фотоны............................................................................... 12

7. Излучение Вавилова – Черенкова........................................................ 14

8. Эффект Комптона.................................................................................. 17

ОСНОВНЫЕ ПОЛОЖЕНИЯ КВАНТОВОЙ МЕХАНИКИ

9. Гипотеза де-Бройля. Опыт Дэвиссона и Джермера............................. 19

10. Вероятностный характер волн де-Бройля. Волновая функция......... 21

11. Принцип неопределенности................................................................ 24

12. Уравнение Шредингера....................................................................... 26

Свет - электромагнитное излучение, обладающее волновыми и квантовыми свойствами.

Квант – частица (корпускула).

Волновые свойства.

Свет - поперечная электромагнитная волна ().

, E 0 ,H 0 - амплитудные значения,
- круг. Цикл. частота,
- частота. Рис.1.

V – скор. Распр. волны в данной среде. V=C/n, где C- скорость света (в вакууме C=3*10 8 м/с), n- показатель преломления среды (зависит от свойств среды).

, - диэлектрическая проницаемость, - магнитная проницаемость.

- фаза волны.

Ощущению свет обязаны электромагнитной составляю волны ().

- длина волны, равна пути, пройденному волной за период (
;
).

Диапазон видимой части света: =0,40,75 мкм.

;

4000 - короткий (фиолетовый); 7500 – длинный (красный).

Квантовые свойства света.

С точки зрения квантовой теории свет испускается, распространяется и поглощается отдельными порциями – квантами.

Характеристики фотона.

1. Масса.
; m 0 - масса покоя.

Если m 0 0 (фотона) , то т.к. V=C, m=– чушь, следовательно m 0 =0 – движущийся фотон. Следовательно, свет остановить нельзя.

Поэтому масса фотона должна рассчитываться из релятивистской формулы для энергии . E=mC 2 , m=E/C 2 .

2. Энергия фотона. E=mC 2 .

В 1900 Макс Планк – немецкий физик выводит для энергии фотона следующую формулу:
.

h=6,62*10 -34 Дж*с - постоянная Планка.

3. Импульс.

p=mV=mC=mC 2 /C=E/C=h/
; p-характеристика частицы, -характеристика волны.

Волновая оптика. Интерференция- перераспред. Света в пространстве.

Наложение световых волн, в результате которого в одних местах пространства происходит усиление интенсивности света, а в других – ослабление. То есть происходит перераспределение интенсивности света в пространстве.

Условием наблюдения интерференции является когерентность световых волн (волны, которые удовлетворяют условию: -монохроматические волны;
– фаза волны постоянна в данной точке пространства с течением времени).

РАСЧЕТ ИНТЕРФЕРЕНЦИОННЫХ КАРТИН.

Источники- когерентные волны. ; * - точ. источник.

Темная и светлая полоса.

1. Если l~d, то
картина неразличима, поэтому, чтобы что-то увидеть, надо 2. l<.

В точке М происходит наложение двух когерентных волн.

, d1,d2 -метры, пройденные волнами; -разность фаз.

Темнее/светлее- интенсивность.
(пропорциональна).

Если волны не когерентные:
(среднее значение за период).

(суперпозиция, наложение).

Если – когерентные:
;

;
-имеет место интерференция света (перераспределение света).

; если
(оптическая разность хода волн);n-показатель преломления; (d2-d1)-геометрическая разность хода волн; -длина волны (путь, который волна проходит за период).

-основная формула интерференции.

В зависимости от пути , они приходят с различным. От последнего зависитIрез.

1. I рез. max .

Это условие максимума интерференции света, потому как при этом волны приходят в одинаковой фазе и поэтому усиливают друг друга.

n-коэффициент кратности; -означает, что интерференционная картина симметрична относительно центра экрана.

Если фазы совпадают, то амплитуды не зависят от фаз.

- Так же условие максимума .

2 . I рез. min .

; k=0,1,2…;
.

- Это условие минимума , т.к. при этом волны приходят в противофазе и гасят друг друга.

Способы получения когерентных волн.

Принцип получения.

Для получения когерентных волн необходимо взять один источник и идущую от него световую волну разделить на две части, которые затем заставить встретиться. Эти волны будут когерентны, т.к. будут принадлежать к одному и тому же моменту излучения, поэтому. .

Явления, используемые для разделения световой волны надвое.

1. Явление отражения света (бизеркала Френеля). Рис.4.

2 . Явление преломления света (бипризма Френеля). Рис.5.

3 . Явление дифракции света .

Это есть отклонение света от прямолинейного распространения при прохождении света через малые отверстия или вблизи непрозрачных препятствий, если их размеры (обоих) d соизмеримы с длиной волны (d~). То: Рис.6. – установка Юнга.

Во всех перечисленных случаях реальный источник света был точечным. В реальной жизни свет может быть протяженным – участок неба.

4.
, n-показатель преломления пленки.

Возможны два случая:

H=const, тогда
. В этом случае интерференционная картина называется полоса равного наклона.

Hconst. Падает параллельный пучок лучей.
.
-полосы равной толщины.

Установка «кольца Ньютона».

Надо рассматривать интерференционную картину в отраженном и преломленном свете.

Содержание статьи

КВАНТОВАЯ ОПТИКА – раздел оптики, изучающий квантовые свойства света. Можно сказать, что квантовая оптика – это квантовая физика света. Интерес к квантовой оптике появился еще в первой половине 20 в., но особенно интенсивное развитие эта область науки получила в конце 20 в., когда физики научились готовить особые состояния света – так называемый неклассический свет. Сейчас неклассический свет успешно применяется в метрологии, спектроскопии, используется для точных измерений, а также для секретной передачи информации. Кроме того, подходы и методы квантовой оптики позволяют существенно дополнить ту информацию, которую дают различные измерения, связанные с излучением и поглощением света.

Кванты.

Именно для света, а, точнее, для электромагнитного поля, была впервые предложена идея квантового описания. Эту идею в 1900. выдвинул Макс Планк , предположив, что излучение света происходит порциями – квантами. Это предположение многим казалось парадоксальным, но оно стало спасительным для целого раздела оптики. Оно позволило объяснить форму спектра излучения нагретых тел, которую ранее объяснить не удавалось. Предыдущие попытки рассчитать спектр излучения приводили к тому, что в области малых длин волн, т.е. в ультрафиолетовой части спектра, возникали неограниченно большие значения – расходимости. Разумеется, в эксперименте никаких расходимостей не наблюдалось, и это несоответствие между теорией и экспериментом получило название «ультрафиолетовой катастрофы». Предположение о том, что излучение света происходит порциями, позволило убрать расходимости в теоретически рассчитанных спектрах и, тем самым, избавить физику от «ультрафиолетовой катастрофы».

Кроме спектров излучения, в физике оставалось еще одно неясное место, а именно, явление фотоэффекта (см . ФОТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ). Было неясно, почему кинетическая энергия электронов, выбиваемых светом из металла, зависит от частоты света. Более того, свет с достаточно малой частотой вообще не способен вызвать фотоэффект. Поскольку малая частота света соответствует красной части спектра, то это явление называют красной границей фотоэффекта. В 1905 Альберт Эйнштейн использовал для объяснения фотоэффекта гипотезу квантов. Идея Эйнштейна заключалась в том, что каждому электрону достается одна-единственная порция энергии – один квант. И если энергия этого кванта мала, ее просто нехватает для выхода электрона из металла. На основе этой идеи Эйнштейн развил теорию фотоэффекта, которая прекрасно подтвердилась экспериментальными данными.

Теперь оказалось, что свет и излучается, и поглощается порциями. Это побудило Эйнштейна предположить, что свет всегда имеет дискретную структуру. Эта замечательная идея была лишь гипотезой: ведь из того, что поглощение и излучение света происходит порциями, еще не следует, что свет и существует только в виде порций. Но именно эта идея оправдывает название «квантовая оптика», и именно с развитием квантовой оптики появились более веские аргументы в пользу квантовой природы света.

Частицы или волны?

В начале 20 в. кванты света стали называть фотонами, и вскоре стало общепринятым утверждение: «Свет состоит из фотонов». Появилось представление о свете как о потоке корпускул, т. е. частиц. Тем не менее, волновые явления, наблюдаемые для света, например, интерференцию и дифракцию, не удавалось объяснить с точки зрения корпускулярной структуры света. Получалось, что свет, да и вообще электромагнитное излучение – это волны и в то же время поток частиц (см . КВАНТОВАЯ МЕХАНИКА). Примирить эти две точки зрения позволил развитый к середине 20 в. квантовый подход к описанию света. С точки зрения такого подхода, электромагнитное поле может находиться в одном из различных квантовых состояний. При этом существует только один выделенный класс состояний с заданным числом фотонов – фоковские состояния, названные так по имени В.А.Фока . Поэтому фразу «свет состоит из фотонов» не следует понимать буквально – так, например, свет может находиться в таком состоянии, что с вероятностью 99% он не содержит фотонов, а с вероятностью 1% он содержит два фотона. В этом одно из отличий фотона от других элементарных частиц – например, количество электронов в ограниченном объеме задано совершенно точно, и его можно определить, измерив полный заряд и поделив на заряд одного электрона. Количество же фотонов, находящееся в некотором объеме пространства в течение некоторого времени, измерить точно можно в очень редких случаях, а именно, только тогда, когда свет находится в фоковских состояниях. Целый раздел квантовой оптики посвящен различным способам приготовления света в различных квантовых состояниях, частности, приготовление света в фоковских состояниях представляет собой важную и не всегда выполнимую задачу.

Эксперимент Брауна – Твисса.

Одиночные и коррелированные фотоны. Может ли быть неквантовая физика света? Конечно, да, и в большинстве случаев оптические явления можно объяснить без помощи квантовой теории. Но есть много случаев, когда это не так и когда важнао учитывать квантовую природу света.

Считается, что первый эксперимент в квантовой оптике - это эксперимент Брауна и Твисса, выполненный в 1956. Браун и Твисс показали, что если направить свет от некоторых источников на два фотоприемника, которые «щелкают» при регистрации фотонов, то приемники будут часто щелкать одновременно. В эксперименте Браун и Твисс использовали излучение ртутной лампы, а позже – свет от звезды. Этот эксперимент довольно долго считался доказательством фотонной природы света: ведь одновременность щелчков фотоприемников означает, что оба они регистрируют существующие в действительности порции света, а не просто случайно щелкают время от времени. Однако оказывается, что при регистрации света от ртутной лампы или звезды одновременные щелчки происходят в лучшем случае всего в два раза чаще, чем было бы при случайных щелчках фотоприемников. Этот результат вполне объясним классически и еще не доказывает фотонной структуры света. Тем не менее, очень скоро (в шестидесятых годах 20 в.) были обнаружены источники света, которые в подобном эксперименте приводят к строго одновременным щелчкам фотоприемников. Одновременность каких-то событий в различных пространственных точках в физике принято называть корреляцией. Например, если два приятеля говорят по телефону только друг с другом, то телефон у них бывает занят всегда одновременно, и можно говорить о корреляции телефонных звонков в их квартирах. Соответственно, свет, который заставляет два фотоприемника щелкать строго одновременно, можно назвать светом с парной корреляцией, или группировкой фотонов. Такие свойства проявляет двухфотонный свет. С другой стороны, существуют источники света, которые никогда не дают одновременных щелчков фотодетекторов. Такой свет называется светом с антигруппировкой фотонов.

Неклассический свет.

Эксперименты по регистрации света с группировкой и антигруппировкой фотонов действительно доказали фотонную структуру света, и их можно считать «настоящими квантовооптическими» экспериментами. Но в обоих случаях свет приготавливался в специальных квантовых состояниях с заданным числом фотонов. В экспериментах первого типа регистрировался двухфотонный свет, в экспериментах второго типа – однофотонный свет. Таким образом, опять можно придти к выводу, что только в особых состояниях свет проявляет свойства, которые невозможно объяснить с классических позиций. Такие состояния света называют неклассическими.

У двухфотонного света есть еще одно замечательное свойство. Оказалось, что такой свет можно использовать для экспериментальной проверки основной идеи квантовой механики – идеи о вероятностном поведении отдельных квантовых частиц (см. НЕРАВЕНСТВА БЕЛЛА).

Какие же неклассические состояния света можно на сегодняшний день приготовить в лабораториях? Оказывается, совсем немного видов. Физики умеют готовить однофотонный свет и двухфотонный свет с примесью вакуумного состояния, т.е. состояния света без фотонов. Что это означает? В случае однофотонного света это значит, что даже идеальный фотоприемник, включенный в определенный момент, не обязательно зарегистрирует фотон; он щелкнет лишь с какой-то вероятностью. (Под идеальным фотоприемником понимается приемник, который срабатывает с вероятностью 100%, если на входе есть фотон.) Однако двух фотонов фотоприемник не зарегистрирует никогда, даже если он в принципе способен отличить один фотон от двух. Аналогично, не будет зарегистрировано троек фотонов, четверок фотонов и т.д. Соответственно, если фотоприемник (или пара фотоприемников) регистрирует смесь вакуумного и двухфотонного состояния, щелчки будут происходить только парами, но в случайные моменты времени. Тройки, четверки фотонов и т.д. также не будут зарегистрированы.

Однофотонный свет можно приготовить и без примеси вакуумного состояния – при этом будут точно известны моменты, когда нужно включать фотоприемник, и он будет щелкать с вероятностью 100%. А трехфотонный и тем более четырехфотонный свет экспериментаторы не умеют готовить даже с примесью вакуума!

И наконец, последний из «доступных» видов неклассического света – это так называемый сжатый свет, такой свет содержит лишь четное число фотонов, и при его регистрации фотоприемники могут обнаружить пары фотонов, четверки, шестерки и т.д., но никогда – тройки, пятерки и другие нечетные числа фотонов.

Применения неклассического света.

Неклассический свет привлекает внимание физиков не только как интересный объект исследования. Он оказывается очень полезным с точки зрения различных применений. Так, двухфотонный свет используется для точной калибровки фотоприемников. Каждый фотоприемник неидеален, т.е. срабатывает с вероятностью, меньшей 100%. Эта вероятность называется квантовой эффективностью фотоприемника. Калибровкой фотоприемника называют измерение его квантовой эффективности; прежде для этого использовались эталонные источники или приемники света, и это делало измерение не очень точным. Однако двухфотонный свет позволяет обойтись без таких эталонов. Действительно, если два фотоприемника регистрируют двухфотонный свет, то в идеале они всегда должны щелкать одновременно. В действительности же количество одновременных щелчков будет меньше количества щелчков любого из фотоприемников. Поделив число одновременных щелчков на число щелчков одного из фотоприемников, можно получить квантовую эффективность второго фотоприемника. При этом никаких эталонов не требуется, и точность измерения может быть значительно повышена по сравнению с традиционными методами.

Сжатый свет, как и двухфотонный свет, оказывается полезным при точных измерениях. Его использование позволяет уменьшить ошибки эксперимента, связанные с квантовой неопределенностью. Известно, что квантовые объекты чаще всего не имеют точно заданных параметров; их свойства можно назвать «размазанными», так же как «размазано» их положение в пространстве. При высокоточных измерениях, когда погрешности эксперимента сведены к минимуму, эта размазанность свойств становится принципиальным ограничением точности измерений. Использование сжатого света позволяет обойти эту трудность и в определенные моменты времени уменьшить размазанность.

Наконец, одно из последних применений неклассического света – это секретная передача информации (квантовая криптография). Для этого удобнее всего использовать однофотонный свет. Идея квантовой криптографии – в том, чтобы передавать информацию отдельными фотонами. Например, цифры 0 и 1 кодируются поляризацией фотонов: вертикально поляризованный фотон обозначает «0», а горизонтально поляризованный фотон – «1». Такая передача информации будет секретной, потому что ее нельзя «подслушать». Любой подслушиватель может лишь перехватить некоторые фотоны целиком – ведь он не может отщепить часть фотона и узнать таким образом его поляризацию. Но перехваченные фотоны просто не будут участвовать в передаче информации, поэтому информация, переданная отдельными квантами, защищена от подслушивания.

Мария Чехова

Раздел подготовлен Филиппом Олейником

КВАНТОВАЯ ОПТИКА - раздел оптики, изучающий микроструктуру световых полей и оптические явления в процессах взаимодействия света с веществом, в которых проявляется квантовая природа света.

Начало квантовой оптике было положено М. Планком в 1900 г. Он ввёл гипотезу, коренным образом противоречащую представлениям классической физики. Планк предположил, что энергия осциллятора может принимать не любые, а вполне определённые значения, пропорциональные некоторой элементарной порции - кванту энергии . В связи с этим испускание и поглощение электромагнитного излучения осциллятором (веществом) осуществляется не непрерывно, а дискретно в виде отдельных квантов, величина которых пропорциональна частоте излучения: ,

где коэффициент получил впоследствии название постоянной планка. Определённое из опыта значение

Постоянная Планка - это важнейшая универсальная постоянная, играющая в квантовой физике такую же фундаментальную роль, как скорость света в теории относительности.

Планк доказал, что формулу для спектральной плотности энергии теплового излучения можно получить только в том случае, если допустить квантование энергии. Предыдущие попытки рассчитать спектральную плотность энергии теплового излучения приводили к тому, что в области малых длин волн, т.е. в ультрафиолетовой части спектра, возникали неограниченно большие значения — расходимости. Разумеется, в эксперименте никаких расходимостей не наблюдалось, и это несоответствие между теорией и экспериментом получило название "ультрафиолетовой катастрофы". Предположение о том, что излучение света происходит порциями, позволило убрать расходимости в теоретически рассчитанных спектрах и, тем самым, избавиться от "ультрафиолетовой катастрофы".

В XX в. появилось представление о свете как о потоке корпускул, т. е. частиц. Тем не менее, волновые явления, наблюдаемые для света, например, интерференцию и дифракцию, не удавалось объяснить с точки зрения корпускулярной природы света. Получалось, что свет, да и вообще электромагнитное излучение — это волны и в то же время поток частиц. Объединить эти две точки зрения позволил развитый к середине 20 в. квантовый подход к описанию света. С точки зрения такого подхода, электромагнитное поле может находиться в одном из различных квантовых состояний. При этом существует только один выделенный класс состояний с точно заданным числом фотонов - фоковские состояния, названные так по имени В.А.Фока. В фоковских состояниях число фотонов фиксировано и может быть измерено со сколь угодно высокой точностью. В остальных же состояниях измерение числа фотонов всегда будет давать некоторый разброс. Поэтому фразу "свет состоит из фотонов" не следует понимать буквально — так, например, свет может находиться в таком состоянии, что с вероятностью 99% он не содержит фотонов, а с вероятностью 1% он содержит два фотона. В этом одно из отличий фотона от других элементарных частиц — например, количество электронов в ограниченном объеме задано совершенно точно, и его можно определить, измерив полный заряд и поделив на заряд одного электрона. Количество же фотонов, находящееся в некотором объеме пространства в течение некоторого времени, измерить точно можно в очень редких случаях, а именно, только тогда, когда свет находится в фоковских состояниях. Целый раздел квантовой оптики посвящен различным способам приготовления света в различных квантовых состояниях, вчастности, приготовление света в фоковских состояниях представляет собой важную и не всегда выполнимую задачу.